
TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology

Diploma Thesis

Energy-Efficient TDMA Schedules for
Data-Gathering in Wireless Sensor

Networks

by

Bernd-Christian Renner

June 2008

Supervised by

Prof. Dr. Volker Turau
Institute of Telematics

Hamburg University of Technology, Germany

Prof. Dr. Hermann Rohling
Institute of Telecommunications

Hamburg University of Technology, Germany

Abstract

In recent years, wireless sensor networks have been frequently adopted for data-EN

gathering. The inherent request for prolonging network lifetime gives rise to the
demand for energy-efficiency. In multi-hop networks, this end is met by applying
dedicated data-collection phases in combination with Time-Division-Multiple Access
(TDMA) protocols for scheduled transmission. Despite the existence of a variety
of different scheduling schemes, a detailed comparison has not been carried out. In
this thesis, an analytical investigation is therefore provided to reveal the strengths
and weaknesses of existing schemes. As the latter exhibit severe disadvantages, a
new scheduling scheme, named Spatial Path-Based Reuse (SPR), is devised. Its dis-
tributed implementation is frugal and highly efficient, as it combines a small memory
footprint with low communication overhead. To permit an in-depth comparison under
realistic conditions, a simulation framework for the ns-2 simulator is also developed.
The results obtained from extensive simulation with more than 400,000 individual
runs substantiate the advantages of SPR, particularly in large networks. Moreover,
they reinforce the strengths and shortcomings of the different schemes. The thesis con-
cludes with recommendations for the most suitable scheme for a given data-gathering
scenario.

In den letzten Jahren wurden drahtlose Sensornetze vielfach zur DatenerfassungDE

eingesetzt. Die inhärente Notwendigkeit zur Steigerung der Lebenszeit eines Netzes
bedingt eine effiziente Nutzung der vorhandenen Energie. Dieses Ziel wird durch
die Verwendung von dedizierten Phasen zur Datensammlung in Kombination mit
TDMA (Time-Division-Multiple Access) Protokollen zur zeitlichen Planung von
Funkübertragungen erreicht. Ein Sendeplan wird durch ein Schema beschrieben, das
die Sendezeitpunkte der einzelnen Sensorknoten festlegt. Obwohl diverse Verfahren
zur Erstellung von Schemata existieren, fehlt bislang ein detaillierter Vergleich. Aus
diesem Grund wird in der vorliegenden Arbeit eine analytische Untersuchung durchge-
führt, um die Stärken und Schwächen existierender Verfahren aufzudecken. Letztere
offenbaren hierbei gravierende Nachteile, so dass ein neuer Algorithmus namens Spa-
tial Path-Based Reuse (SPR) entworfen wird. Seine verteilte Implementierung ist
durch die Kombination von geringem Speicherverbrauch mit minimiertem Kommuni-
kationsaufwand sowohl einfach als auch effizient. Um einen umfassenden Vergleich
unter realistischen Bedingungen durchführen zu können, wird eine Simulationsumge-
bung für den ns-2 Simulator entwickelt. Die hiermit aus über 400,000 individuellen
Simulationen gewonnenen Resultate belegen die Vorteile von SPR insbesondere in
großen Netzen. Ferner bestätigen sie die Stärken und Schwächen der anderen Ver-
fahren. Die Arbeit endet mit Empfehlungen für das jeweils am besten geeignete Ver-
fahren in einem gegebenen Szenario.

Table of Contents

List of Symbols v

1 Introduction 1

2 State of the Art 5
2.1 Wireless Sensor Networks . 5

2.1.1 Characteristics and Challenges 6
2.1.2 Formal Abstraction . 7
2.1.3 Interference in Wireless Communication 8

2.2 Data-Gathering in Wireless Sensor Networks 10
2.2.1 Strategies for Collecting Data 10
2.2.2 Data-Gathering Tree . 12
2.2.3 Reliable Transmission and Buffer Management 13
2.2.4 Existing Approaches . 14

2.3 MAC Protocols for Wireless Sensor Networks 17
2.3.1 Comparison of MAC Protocols 17
2.3.2 TDMA Slot Assignment for Data-Gathering 20

3 Efficient TDMA Schedules for Data-Gathering 27
3.1 Objectives . 27
3.2 Analytical View on Existing TDMA Schedules 28

3.2.1 Prerequisites . 28
3.2.2 Number of Slots . 29
3.2.3 Memory Usage . 31
3.2.4 Runtime Analysis . 31
3.2.5 Buffering Issues . 33
3.2.6 Packet Loss and Link Failure 35
3.2.7 Summary and Comparison . 36

3.3 A New, Light-Weight TDMA Schedule for Data-Gathering 37
3.3.1 Spatial Path-Based Reuse Slot Assignment 37
3.3.2 Effective Implementation . 39
3.3.3 Explicit Slot Calculation . 41

i

Table of Contents

3.3.4 Example . 41
3.3.5 Analytical Evaluation and Comparison 42

3.4 Considerations for a Simulative Comparison 44
3.4.1 Metrics . 45
3.4.2 Parameters . 46

4 Simulation Framework 49
4.1 Introduction to ns-2 . 49

4.1.1 Protocol Stack . 49
4.1.2 Wireless Physical Layer and Channel 51
4.1.3 MAC Layer . 52

4.2 Simulating Data-Gathering in ns-2 54
4.2.1 Analysis . 54
4.2.2 Simulation Settings . 57
4.2.3 Simulation Environment . 59
4.2.4 Data-Collection Protocol . 60
4.2.5 Extensions for Dynamic Slot Reuse 62

4.3 Implementation of the Framework . 65
4.3.1 Application Layer . 65
4.3.2 Routing . 65
4.3.3 Buffer . 67
4.3.4 MAC Layer . 67
4.3.5 Physical Layer . 71
4.3.6 Evaluation and Logging . 72

5 Simulation and Evaluation 73
5.1 Simulation Parameters . 73

5.1.1 Configuration of ns-2 . 73
5.1.2 Settings . 75

5.2 Detailed Simulation Results . 78
5.2.1 Topology and Tree Characteristics 78
5.2.2 Number of Slots . 81
5.2.3 Type I . 83
5.2.4 Type II Enhanced . 85
5.2.5 Type III . 88
5.2.6 SPR . 91

5.3 Comparison . 94
5.3.1 Runtime . 95
5.3.2 Energy-Efficiency . 98
5.3.3 Summary . 102

6 Conclusion and Outlook 105

Bibliography 109

ii

Table of Contents

A Simulation Framework: Additional Material 117
A.1 Simulation Parameters . 117

A.1.1 Basic Simulation Configuration 117
A.1.2 Options of the Simulation Script 118
A.1.3 OTcl Variables . 119

A.2 Format of the Simulation Result Files 121

B Scripts for Creating Simulation Settings 125
B.1 Topology Generation . 125
B.2 Tree Construction . 126
B.3 Buffer Initialization . 127
B.4 Slot Assignment . 127

C Contents of the DVD 129
C.1 Directory Structure . 129
C.2 Installing and Setting up the Simulation Environment 129

iii

Table of Contents

iv

List of Symbols

V � tv0, . . . , vN�1u Set of N nodes vi belonging to a network with sink v0

di,j Distance between two nodes vi and vj

Rcom Communication radius

Rint � γRcom Interference radius and interference factor

PT
i , PR

i,j Sending power of node vi and sensed reception power by
node vj during reception from vi

α Pathloss exponent used for modeling wireless signal propa-
gation

θcs, θrx Carrier-sense and receive threshold. θcs is the sensitivity of
the radio transceiver, θrx is the signal power required to
initiate reception by the transceiver

θint Threshold to decide if simultaneous packet reception leads
to a collision

% Node density, i.e., the average number of nodes inside a com-
munication circle with radius Rcom

pvi, vjq P E Set of bidirectional communication links in the network

G � pV, Eq Graph representation of a wireless sensor network

Ni � tvj P V | i�j ^ pvi, vjq P Eu The set of bidirectional communication partners of node vi

T � E , |T | � N�1 Routing tree rooted in the sink

Ti Subtree rooted in (and including) node vi

Ci, Ci � |Ci| The set and number of children of node vi in T

C � maxi |Ci| Maximum number of children of a node in T

F � tvi P V | Ci � Hu, P � |F | Set of leafs in T and the number of leafs, or equivalently,
the number of paths from a leaf to the sink

v

List of Symbols

Fi Set of leafs in the subtree Ti of T

tp0, . . . , pP�1u Set of paths from each leaf to the sink

h, h�, hi, ` Depth h of a tree T , the minimum depth h� of a correspond-
ing minimum-depth tree, and the depth hi of an individual
node vi. ` P t0, . . . , hu refers to a level of T

S, |S| � R Set of slots with round length R assigned by a TDMA
scheme. Indices I, II, III, and SPR are used with R to indi-
cate a particular TDMA schedule

Si � ts0i , ..., s
M
i u Slots assigned to node vi

T Runtime of a data-gathering collection phase. Indices I, II,
III, and SPR are used to indicate the runtime of a particular
TDMA schedule. Ò and Ó are used, if slots are assigned in
ascending or descending order from leafs to the sink

σ Maximum throughput at the sink, i.e., the number of equally
sized data packets collected per time unit

Li, L̃i Initial and current buffer fill level of a node vi

L�i �
°

vjPTi
Lj Load of a node vi, i.e., the sum of packets it has to forward

B, B̃ Buffer size of each node in the network and the soft limit of
the buffer used for flow control

ωc, ωp The number of (sending) slots to be skipped by a child, in
case its parent encounters a buffer overflow (ωc); and the
number of (listening) slots to be skipped by a parent, if its
child experiences a buffer underrun (ωp).

r Maximum number of packet retransmissions before the cor-
responding link is declared interrupted

η Multiplier for the communication radius Rcom used to model
the area in which a Type I slot assignment does not reassign
a slot

λ Parameter used by Type III to assign slots to a node vi

according to its initial buffer fill level Li

κ The (maximum) number of slots alloted to each path pm by
the SPR slot assignment

di, oi Displacement and offset vector determining the set of
slots Si assigned to node vi by SPR

vi

Chapter1
Introduction

Monitoring and controlling of processes imposes the need to gather data, which can be
performed by sensors. To evaluate the data, two traditional solutions exist. The first
one is to store data locally and collect it manually. However, this is time-consuming,
labor-expensive, impractical in harsh environments, and renders prompt evaluation
impossible. The second one is to wire up sensors, which makes their readings instantly
available. Yet, this solution is invasive, intricate and inflexible, costly, and thus gen-
erally infeasible. Recently, a new option has arisen. The advance in micro computing
has put forth so-called wireless sensor nodes. These are tiny, low power, embedded
boards, equipped with sensing devices, a processing unit, and a radio module for
wireless transmission of data. Mass production has made them affordable. The list
of their features already reveals their suitability and superiority to fulfill the require-
ments of data-gathering. Their wireless connectivity renders fast access to data and
the deployment close to or even inside phenomena possible, even under harsh or dan-
gerous environment conditions. Their size allows for the deployment of a large number
of nodes, so that a non-invasive monitoring solution with high spatial resolution is
achievable.

Monitoring applications can be subdivided as follows. In the one-to-one commu-
nication paradigm, sensor nodes generate events and generally report them to a
destination that may differ depending on the event and the node generating it. In
the many-to-one paradigm, each sensor node periodically performs measurements,
possibly pre-processes and finally reports them to a central node. The many-to-one
paradigm is frequently adopted in data-gathering scenarios, such as environment or
agricultural monitoring. The latter has recently been employed to observe climate,
soil and pasture. A particularly challenging example is that of tideland monitoring,

1

1 Introduction

where sensor nodes are placed off shore in order to sample data and only report their
readings during ebb tide.

Even though much research has been dedicated to the many-to-one paradigm, open
issues inherent in the nature of wireless sensor networks require further investigation.
Because of their small size and relatively low cost, wireless sensor nodes provide
low computation power and few resources concerning memory. Furthermore, wireless
transmission range and bandwidth are limited. Hence, nodes may not be able to
directly report their sensor readings to a central node, so that data has to be forwarded
by other nodes using multi-hop routing. Finally, sensor nodes are equipped with
low-capacitive batteries only. Batteries are required for autarkic and autonomous
operation. However, they must be small in order not to spoil the advantage of a sensor
node’s small size. As a result, nodes must operate as energy-efficient as possible so
as to increase network lifetime.

As the radio transceiver of a sensor node consumes the largest part of the energy,
it must be switched off whenever possible and efficiently used when switched on.
Time-Division Multiple Access (TDMA) of the channel promises to meet this end
by preventing the major sources of inefficiency: idle listening, overhearing, and colli-
sions. This is achieved by setting up a sending and listening schedule for each node,
which requires a distributed algorithm. Although many different scheduling schemes
have been proposed, comparisons are rather focused on individual solutions than on
the different principles of schedules. Hence, an ideal solution for the many-to-one
paradigm has not been identified so far.

This thesis encompasses three objectives. Firstly, a theoretical analysis of the
scheduling problem and the capability of the existing schemes is to be conducted.
Secondly, the outcome of this analysis shall be employed to design a new scheduling
scheme. Thirdly, a comparison between this new scheme and the existing ones ought
to be performed.

Having identified the weaknesses of the competitors through the theoretical anal-
ysis, a new, light-weight TDMA schedule for data-gathering, named Spatial Path-
Based Reuse (SPR) scheme, is developed. Its distributed implementation is frugal
and highly efficient, as it combines a small memory footprint with low communi-
cation overhead. To demonstrate and evaluate the advantages of SPR, an in-depth
comparison via simulation is necessary. For this purpose, a simulation framework
based on ns-2 is conceived and implemented, so that the analysis can be performed
under realistic conditions. This comparison particularly includes energy-efficiency and
the overall time required to forward a given amount of data to the central node. The

2

latter is an important criterion. Firstly, the time available for forwarding data may
be restricted as in the mentioned tideland application. Secondly, decreasing the time
required for collecting all data allows to increase the sampling rate and data resolu-
tion.

The results obtained from more than 400,000 individual simulation runs show that
SPR produces schedules that effectively minimize the overall time required to forward
all data in large networks. Here, SPR profits from spatially reusing slots and its abil-
ity to prevent buffer congestion, which influences the performance of its opponents
severely. Furthermore, SPR achieves energy-efficiency close to the possible minimum.
In conclusion, SPR outperforms its competitors particularly in large networks and
thus advocates itself to be adopted in TDMA-driven data-gathering applications.
However, it is, e.g., not suitable in small and in sparse networks, where other ap-
proaches show to be favorable. For this reason, the simulation results are also used
to identify the strengths and advantages of the different schedules. This knowledge
is exploited to devise a schema that encompasses suggestions on which schedule to
employ depending on the respective scenario.

3

1 Introduction

4

Chapter2
State of the Art

In this chapter a general overview about wireless sensor networks and their character-
istics will be given. Based on this, it follows an introduction to monitoring applications
using those networks. Finally, a detailed analysis on the adoption of energy-efficiency
will be carried out.

2.1 Wireless Sensor Networks

In the recent past the advance in micro computing has put forth so-called wireless
sensor nodes. They can be described as tiny, low power, embedded boards, equipped
with sensing devices, a processing unit, and a radio module for wireless transmis-
sion of data. Estrin et. al. provide an in-depth analysis of the opportunities of wire-
less sensor networks [ECPS02]. In particular, their wireless connectivity allows for
deploying them close to or inside phenomena, even in harsh or dangerous environ-
ments. Due to their size, a non-invasive monitoring solution is attainable with high
resolution. Wireless sensor nodes have therefore become a suitable and convenient
solution for new possibilities of sensing; application fields can be divided into ecolog-
ical [MPS�02], agricultural [WCS�07], environmental [MPR�05, SWC�07, CO05],
and structural [KPC�06] monitoring.

Those applications have in common that they are built upon a many-to-one com-
munication scheme: All nodes in the network report their sensor readings to a central
node, the sink. This pattern can be found in most monitoring applications and is
often regarded as data-gathering . Before a detailed introduction to this topic will be
provided, a general understanding of wireless sensor networks is required. Therefore,
their general characteristics will be presented briefly.

5

2 State of the Art

2.1.1 Characteristics and Challenges

In spite of their general suitability for many applications, wireless sensor networks
have their weaknesses. Due to their size and relatively low cost, wireless sensor nodes
are restricted to only provide low computational power and few resources concern-
ing memory, wireless transmission range, and bandwidth. Furthermore, nodes have
a limited amount of energy, because they are generally battery-powered. This is a
necessity in order to realize unattended deployments. However, those batteries are
low-capacitive, as to meet the desire for small sized and low priced sensor nodes.
Since battery replacement is usually not feasible in large networks or even impossible
in harsh environments, conservation of energy is a crucial point in order to maximize
network lifetime.
As a result of the restrictions concerning memory and computational power, ap-

plication and protocol layout must be done carefully. Firstly, saving memory is an
important design feature. If, e.g., nodes must store information about remote nodes
within their communication range, the data to store must be reduced as much as
possible. Secondly, expensive and recurring computations must be avoided. Tradeoffs
between conservation of memory, energy, and computing time are commonly required.
To prolong the lifetime of a network, energy-efficiency is of vital importance. As

the radio is the heaviest energy consumer [SLR�05], sensor nodes offer sleep modes,
in which they switch off the radio and sensing devices. The fraction of time a node
actually spends outside a sleep mode is called duty cycle. Conserving energy implies to
reduce the latter. Hence, sleep modes should be entered whenever possible. If wireless
communication is required, efficient usage of the radio is mandatory. This must be
realized by the Medium Access Control (MAC), which is responsible for controlling
the radio. In the following, the main origins pertaining energy wastage by wireless
radio communication will be explored.
The most obvious source of energy dissipation is that of signal interference. Here, a

signal results from packet transmission. Interference occurs, if a node receives signals
from two or more different senders at the same time. If at least two of the packets
are destined to that receiver, this is called a collision. An attempt to avoid interfer-
ence is the application of contention-based, also called Carrier-Sense Multiple Access
(CSMA), protocols that do a carrier sense before starting a transmission. If the sensed
signal is below the carrier-sense threshold, the sender assumes a clear channel and
commences transmitting. If not, a new carrier sense will be started after a backoff.
However, this method is inappropriate to solve what is called the hidden-terminal
problem. Two nodes that are outside each other’s communication range can start

6

2.1 Wireless Sensor Networks

timely overlapping transmissions. If at least one of the intended receivers is inside
the communication range of both senders, there will be interference.

Idle listening on the radio channel already consumes a multiple of energy as com-
pared to the sleep modes. Additionally, listening on the channel leads to overhearing .
Here, nodes receive (overhear) packets not destined to them, which causes wastage
of energy due to useless reception and packet processing [BR04]. Measurements of
energy consumption during packet reception for the Scatterweb Platform [SLR�05]
can be found in [TW07a]; they reveal that reception and transmission draw approxi-
mately the same current. Both problems are attenuated by scheduled MAC protocols;
particularly Time-Division Multiple Access (TDMA) is a promising approach. Here,
time is divided into transmission slots, and slots are assigned to nodes.

In the context of reducing radio usage, packet size is yet another aspect. On the
one hand, short packets lead to large overhead caused by packet headers. On the
other hand, long packets are more likely to be corrupted by bit errors. To increase
reliability in the face of packet loss, retransmissions and forward error correcting
codes can be used [JE07]. Discussions on packet length and energy-efficiency can be
found in [SAM03, Joe05]. Yet, the choice of optimal parameters in this context is
difficult, as it largely depends on the radio chip, protocol, and environment.

The limitations of wireless sensor nodes have to be addressed at different levels.
Memory and computational restrictions are application specific and will be considered
during application and protocol design. Due to the relevance of interference, models
will be presented in the following, preceded by a formal abstraction of wireless sensor
networks. Idle listening and overhearing will be addressed during the discussion of
data-gathering applications and MAC protocols in Sections 2.2.4 and 2.3. The prob-
lem of finding optimal packet sizes and integrating forward error correcting codes
will not be explicitly addressed in this thesis. They are regarded as an orthogonal
problem.

2.1.2 Formal Abstraction

A wireless sensor network can be described as a graph G � pV , Eq. V � tv0, . . . , vN�1u
denotes the set of equally equipped sensor nodes (including the sink v0), and E is the
set of links between nodes. A tuple pvi, vjq is a member of E � V�V , if and only if a
reliable, bidirectional communication between vi and vj is possible.

In a real network, links are often unstable and asymmetric [ZK07]. Hence, a node vi
must keep track of its neighborhood Ni. Here, vj P Ni implies that vj is inside the

7

2 State of the Art

communication range of vi, i.e., the distance di,j between vi and vj is at most the com-
munication radius Rcom. By calculating and exchanging link-qualities with its neigh-
bors, a node can identify bidirectional and reliable links. The Wireless Neighborhood
eXchange (WNX) protocol is an example protocol dedicated to this task [TRV�05].
Related to neighborhoods, an important characteristic of a wireless sensor network
is its density %. It is defined as the average number of neighboring nodes or, alter-
natively, the average number of nodes inside a circle area with radius Rcom. Thus, it
can be expressed as % � 1

N

°
i 1� |Ni|.

Throughout this thesis, links determined by the neighborhood protocol are assumed
to be stable over time. Antennas are expected to be omni-directional, and signal
propagation does not depend on node positioning or orientation. Additionally, all
nodes are in line-of-sight, use the same transmitting power and generally have the
same physical characteristics. However, this does not imply that packets between
two nodes vi and vj with a link pvi, vjq P E can be exchanged without packet loss or
interference.

2.1.3 Interference in Wireless Communication

Interference is a serious problem in data-gathering applications: All data is trans-
ported to the sink, so that traffic, and thus interference, increases with closeness to the
sink. A detailed analysis of interference using field studies is presented in [ZHSA05].
In addition, different models have been developed in order to permit an interference
analysis.

The Fixed Power Protocol Interference Model (FPPrIM) discussed in [RRDM08]
makes use of the interference radius Rint � γRcom. It is commonly assumed that
1 ¤ γ ¤ 2. A transmission from vi to vj with di,j ¤ Rcom is interfered, if the receiver
vj is inside the interference radius of a simultaneously transmitting node vk:

dk,j ¤ Rint � γRcom (2.1)

An example is shown in Figure 2.1. Here, v5 may cause interference on a transmission
from v13 to v12.

A more realistic model uses the receiving power of signals in order to detect inter-
ferences. If a signal is sent at vi with a transmitting power P T

i , it will be received at
vj with power PR

i,j � P T
i � pd0{di,jqα. Here, α is the pathloss exponent usually taken

from the range r2, 4s, and d0 is a reference distance. A transmission from vi to vj is

8

2.1 Wireless Sensor Networks

Rcom

Rint

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

� Figure 2.1: FPPrIM-based interference with Rint � 2Rcom

disturbed by a simultaneous transmission from vk, if the ratio PR
i,j{PR

k,j is below the
interference threshold θint:

PR
i,j

PR
k,j

 θint (2.2)

The latter is a parameter of the radio chip and can be understood as its sensitivity
to interference. This model is used, e.g., in the implementation of the IEEE 802.11
standard for ns-2 with θint� 10 [FV08, Liu]. With α� 2.7 [SRS90] and equal trans-
mission powers, the situation in Figure 2.1 changes as follows: A transmission from
v13 to v12 cannot be disturbed by v5. Yet, v5 may still interfere a transmission from
v12 to v8.
In wireless sensor networks, it frequently occurs that more than two nodes are

transmitting at the same time. Hence, just comparing one receiving power with an-
other gives only a part of the picture. The signal-to-noise+interference-ratio (SINR)
takes all signals on the channel into consideration, including the ambient noise N0.
Using this model, a transmission from vi to vj is disturbed, if the following equation
is satisfied:

SINR � PR
i,j

N0 �
°
k,k�i,j P

R
k,j

 θint (2.3)

An even more elaborate, statistical model [ZK04] is actualized by considering bit
error rates (BER) in favor of the static threshold θint. For this it uses the SINR
in combination with an error function that depends on the used modulation, e.g.,
On-Off-Keying yields

9

2 State of the Art

BER � 1

2
erfc

�c
SINR

2

�
with erfcpzq � 2?

π

» 8

z

e�ζ
2

dζ (2.4)

Here, erfcp.q is the result of assuming signals to be normally distributed random
variables and performing integral substitution. Besides modulation, this model ac-
counts for packet length, encoding, and forward error control, since the packet recep-
tion rate is calculated by means of BER and those three components. For this model
an implementation for ns-2 is available [Unt08].

2.2 Data-Gathering in Wireless Sensor Networks

As outlined in Section 2.1, data-gathering is a common task in wireless sensor net-
works. Nodes are deployed in order to collect and report sensor readings to a single
sink, that, e.g., writes all data to a database. In general, the covered area of a many-
to-one setup exceeds the communication range of sensor nodes. Besides, reducing
the communication range by decreasing transmission power helps saving energy and
avoids interference. In this case, a tree rooted in the sink provides a suitable routing
environment. In order to achieve reliable communication, an energy-efficient mecha-
nism avoiding packet loss is needed. Additionally, nodes possibly have to store own
sensor readings and must forward foreign data towards the sink. Hence, buffer man-
agement must be considered.

When setting up a data-gathering application, some major issues have to be con-
sidered. Firstly, reliability may be required. Here, it is defined as the property of
all sensor readings eventually reaching the sink. Another important feature is the
throughput σ, i.e., the number of equally sized data packets received by the sink per
time unit. Latency is defined as the time elapsing from generation of a sensor reading
by a node and reception by the sink.

2.2.1 Strategies for Collecting Data

There are two different strategies for the collection of data. The first is to forward
sensor readings in direction of the sink shortly after they become available. This
on-demand approach is necessary, if there are time constraints, i.e., low latency is
required. The second strategy is to employ a two-phase system: During the sensing
phase, nodes store all sensor readings in a buffer. Periodical collection phases are

10

2.2 Data-Gathering in Wireless Sensor Networks

used to forward bulk data to the sink [TW07b]. Of course, this system is applicable,
only if all sensed data is delay-tolerant.

The optimization of energy-efficiency, crucial for the lifetime of a sensor network
(cf. Section 2.1.1), demands low duty cycles. Provided delay tolerance, the two-phase
strategy offers to meet this end by exploiting a priori knowledge of the traffic pattern.
Firstly, it is sufficient to create a new routing tree at the beginning of each collec-
tion phase. This disencumbers the application from continuous tree maintenance as
required for on-demand routing. Additionally, sending schedules can be set up after
tree construction, so that parents know when their children will be transmitting pack-
ets. By knowing the mapping between receiving slots and the corresponding children,
a node is enabled to detect interrupted links and can thus stop listening in those slots.
Finally, during the remainder of the collection phase, a node forwards data until its
buffer runs empty and no more packets are expected from its children. It then informs
its parent, which in turn is allowed to stop listening to that node. As a result of the
whole procedure, idle listening is completely prevented.

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

� Figure 2.2: Data-gathering setup in a wireless sensor network

An example for a data-gathering application during a collection phase is depicted
in Figure 2.2. Dotted edges between nodes show possible communication links, solid
ones indicate the routing tree, pointing from a child to its parent. Envelopes symbolize
ongoing transmission of a packet on the corresponding link. Here, e.g., the transmis-
sion schedule allows concurrent transmission of nodes v1, v10, and v13. Buffers are
displayed by the small circles at the upper right of each node, where the dark part is

11

2 State of the Art

the current fill level. The example illustrates the high buffer fill level of inner nodes,
which have to forward remote packets in addition to sending their own ones. Note
that the sink v0, which is displayed in a darker shade, does not have a buffer, because
connection to a database is presumed.

2.2.2 Data-Gathering Tree

A data-gathering tree T � E is a spanning tree of G rooted in the sink. Subtrees
of a node vi, including vi, are denoted Ti. Each node vi has one parent (except for
the sink) and a set of children Ci, which is empty for leaf nodes. For convenience,
Ci � |Ci| will be used. C � maxiCi is called the maximum number of children or
maximum tree degree. The set of leaf nodes is given as F � tvi P V | Ci � Hu, and
Fi denotes the leafs in the subtree Ti.
Zhou et. al. [ZK03] compare approaches realizing different parent selection strate-

gies. Xue and Fumar [XK04] state that network connectivity is ensured with high
probability, only if C is in the magnitude of logN . This is an important finding, since
completeness of the tree is an imperative for a data-gathering application.

Tree construction largely depends on the topology , which is basically characterized
by the number of nodes N , the position of the sink, the density %, and the distribution
of nodes. An important, energy-relevant factor of tree construction is the resulting
overall depth h of T and the individual node depths hi. This is because every packet
originated in vi must be sent at total hi times, until it reaches the sink. A lower
bound of h is given by the quotient of the maximum distance from a node to the sink
v0 and the communication radius: h ¥ max

i

Q
d0,i

Rcom

U
. Usually, C ! % does not lead to

a considerably larger h. The reason of this is the potentially exponential growth Ch

of nodes with increasing tree depth, whereas the density % usually stays constant or
even decreases with increasing distance from the sink.

Besides depth and overall energy consumption, the number of packets a node has
to forward must be accounted for [YW08]. Consequently, nodes close to the sink send
more packets and thus consume more energy. Leaf nodes, in contrast, only send their
own packets and consume the least energy in the network. As a result, network lifetime
is sensitive to the node consuming the most energy. Therefore, balanced trees lead to
more equally distributed energy consumption among nodes with an equal depth in T ,
which increases overall network lifetime. Yet, the construction of maximum-lifetime
trees for data-gathering is NP-complete [YW08], but breadth-first search already
produces sufficiently balanced trees [DH03].

12

2.2 Data-Gathering in Wireless Sensor Networks

Link-qualities may vary over a longer period, and in consequence, routing trees can
become partitioned. One solution to this problem would be to allow nodes having
more than one parent [TTS05]. Yet, this produces idle listening of the potential
parents. Additionally, tree maintenance imposes communication overhead and may
affect tree depth and balance. This underlines the advantages of the two-phase data-
gathering strategy presented in Section 2.2.1.

2.2.3 Reliable Transmission and Buffer Management

Reliability is an important issue in data-gathering applications, because loss of data
may render the whole experiment bootless. In order to achieve reliable end-to-end
communication, i.e., all data collected in the network is sent to the sink without loss,
in an energy-efficient way, hop-to-hop acknowledgments (ACK) are preferable [EB04,
SH03]. In addition, a sender gains fast feedback about successful packet reception at
the next hop, so that detection of lost packets is simplified.

By using hop-to-hop acknowledgments, each node must store received packets in
a local buffer, until they have been successfully forwarded to the next hop. In a
routing tree, a node may have several children, whereas it (usually) has precisely one
parent. Therefore, the number of incoming packets is potentially higher than that
of outgoing ones, if every node has the same amount of time for packet forwarding.
This may lead to buffer congestion [EB04]. Amplification of this problem due to
packet loss, especially on the link to the parent, is likely. In general, three important
characteristics on this topic are the initial fill level Li of a node vi, its expected load
L�i �

°
vjPTi

Lj, and its buffer size B.

Flow control is required in this situation to serve two purposes: Firstly, it must
timely detect and avoid buffer overflows. Secondly, if a buffer overflow cannot be
avoided, it must prevent futile transmissions [EB04]. In general, this kind of flow
control can be achieved via backpressure. Including according information into ac-
knowledgments keeps communication overhead low, so that energy-efficiency is pre-
served. In the presence of flow control, throughput performance may be affected by
buffer sizes [BBLV05]. However, given the two-phase collection strategy as presented
in Section 2.2.1, flow control must also ensure that enough buffer space will be left
for the next sensing phase.

Figure 2.3(a) illustrates a situation, in which node v1 receives packets from three
nodes and must forward all data to node v0. Assuming equal transmission times for
each node, possible buffer usage is depicted in Figure 2.3(b) for active flow control

13

2 State of the Art

(dark) and no flow control (light). Shadings are used to embrace sets of four slots
consisting of one for each node. Arrows at the top indicate dropped packets due to
buffer overflow. Note that flow control prevents buffer overflow, but does not affect
the number of slots required to forward all data.

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13(a) traffic situation

dropped packet
↓↓↓↓↓↓↓↓↓↓↓↓

without �ow control

slots / time →

�
ll
le
v
e
l

B

L1

0

(b) resulting buffer fill level of v1

� Figure 2.3: Buffer fill level with and without flow control

Enforcing reliability may lead to packet duplicates, if acknowledgments are lost.
Since nodes remove successfully forwarded packets from their buffer, they may not be
able to identify duplicates by scanning through their buffer on a new packet reception
from a child. Attenuation of this problem can be achieved by using MAC sequence
numbers or packet hashs [TW07a].

2.2.4 Existing Approaches

In the early stages of data-gathering applications using wireless sensor networks,
approaches have been fairly intuitive [MPS�02]. Sensor readings have been sent to
the sink via routing trees, as soon as they became available. This was mainly achieved
by purely contention-based MAC protocols. Packets have been forwarded using best-
effort strategies, i.e., using MAC layer acknowledgments and transmission retries up
to a given maximum. With time passing and experience increasing, applications have
become more elaborate. Particularly energy-efficiency has been addressed in order to
prolong network lifetime. This process will be documented in this section.
Directed Diffusion [IGE00] is one of the earliest data-gathering protocols for wire-

less sensor networks. It allows for best-effort data collection without making use of
flow control or acknowledgments. Hence, reliability is not offered. A sink periodically
injects (floods) an interest for data into the network. Nodes spread interests and set

14

2.2 Data-Gathering in Wireless Sensor Networks

up gradients on their reception, so that directed paths to the sink are formed. Good
gradients, according to a given metric, are reinforced; thus, fast adaptation of high
quality paths is achieved. This results in high overhead, as packets are likely to tra-
verse multiple paths. However, the authors address energy-efficiency by particularly
suggesting TDMA, although Directed Diffusion has been simulated using CSMA.

RMST [SH03] is the Reliable Multi-Segment Transport protocol for data-gathering
based on Directed Diffusion on top of a contention-based MAC. To achieve reliabil-
ity and error recovery, it employs a selective hop-to-hop negative acknowledgment
(NACK) strategy. Only so-called caching nodes are able to detect packet loss and
can reinforce loss recovery. Routing of packets is left up to the diffusion layer.

The Event-to-Sink Reliable Transport (ESRT) protocol presented in [SAA03] is an
energy-preserving approach for event-detection applications. However, reliability as
defined at the beginning of this section is not obtained. ESRT only ensures the col-
lection of a required minimum number of reportings of an event. Energy-efficiency is
achieved by running most algorithms on the sink and by applying congestion control.
The latter is additionally used to adapt the event reporting frequency. Here, the num-
ber of reportings is adjusted to keep the transmission volume low, while conserving
the minimum reporting frequency. Routing is done using Dynamic Source Routing
(DSR) in combination with a contention-based MAC, resulting in idle listening.

Data-gathering using the Reactive, Opportunistic Protocol for Environment moni-
toring (ROPE) is discussed in [CO05]. ROPE schedules transmissions in bulks using
a path feedback system in order to decrease packet loss. Acknowledgments are sent
after every tenth packet received and include a list of sequence numbers of success-
fully received packets. Reliability is only enforced up to a given percentile. On the one
hand, energy consumption is reduced by data compression. On the other hand, idle
listening is extensively used in order to achieve 2-hop data delivery. Due to the lack
of a routing mechanism—ROPE is originally designed for single-hop applications—,
nodes with connectivity to the sink offer data relay to nodes that do no receive an
acknowledgment after having transmitted data to the sink. Relay-offering nodes gain
their information by overhearing, so that a contention-based MAC is used.

FlexiMAC [LDCO06] is a highly integrated transport protocol based on TDMA.
It promises fair channel access and high throughput, but does not offer reliability
by itself. Communication failures are overcome by local repair, and buffer usage is
minimized. Energy consumption is reduced by adjusting transmission power. Flexi-
MAC takes care of implicit routing tree construction and maintenance as well as
transmission scheduling. Yet, this involves a high degree of complexity and overhead.

15

2 State of the Art

Diffusion RMST ESRT ROPE FlexiMAC Dozer
[IGE00] [SH03] [SAA03] [CO05] [LDCO06] [BvRW07] [TW07b]

MAC Type both CSMA CSMA CSMA TDMA TDMA TDMA
Multi-Hop 3 3 3 (3) 3 3 3

Tree-Routing (3) (3) – – 3 3 3

ACK Usage – 3 – (3) – 3 3

Reliability – 3 – – – 3 3

Buffering – 3 3 – 3 3 3

Flow Control – – 3 – – 3 3

� Table 2.1: Basic characteristics of different data-gathering approaches

An ultra-low power application for data-gathering, called Dozer, is introduced
in [BvRW07]. In order to reduce energy wastage caused by the communication sub-
system on individual nodes, Dozer is highly cross-layered. Transmission scheduling
is accomplished using a light-weight TDMA protocol. Reliable collection of periodic,
delay-tolerant data is done using a routing tree, which is computed once by trading
depth off against subtree load. In case of link failures, nodes may chose from a list of
secondary parents. If no parent is available, a node has to rescan the neighborhood.
In addition, a suspend mode is used to compensate for temporary link failures and
resulting tree partitioning. It is entered by a node that cannot find a (new) parent in
the tree. After a timeout, a suspended node wakes up and attempts to get reconnected
to the tree.

Long-term reliable data-gathering has been addressed in [TW07b]. Periodically,
routing tree construction is initiated by the sink using breadth-first search. Hence,
link and temporary node failures are coped with by tree rebuilding. In the following
collection phase, reliable transportation of sensor readings towards the sink is accom-
plished by acknowledgments. Energy-efficiency is preserved by deploying a TDMA
protocol, eliminating duplicate packets, and implementing congestion detection. Fi-
nally, nodes enter a sleeping mode after they have forwarded all data of their subtree.

The characteristics of the given examples, summarized in Table 2.1, disclose the
transition from contention-based MAC protocols to their TDMA counterparts in
energy-efficient data-gathering applications. Delay tolerance is assumed in all cases,
but solely later approaches make use of buffering. Closely related to this, recent
works show the importance of congestion control in terms of preservation of energy
and make use of hop-to-hop acknowledgments to assure reliability. Cross-layering is
yet another development in minimizing the wastage of energy and thus prolonging
overall network lifetime. Furthermore, routing trees have been found to be most

16

2.3 MAC Protocols for Wireless Sensor Networks

suitable for the data-gathering, many-to-one scheme, although no clear trend can
be observed towards either periodic tree reconstruction or continuous maintenance.
However, the former appears more suitable in a two-phase data-gathering system,
since link-qualities may considerably change between two collection phases. Modern
protocols introduce a suspend mode, in case a node becomes disconnected from the
tree. Depending on the data-gathering strategy, nodes wake up in the next collection
phase or after a reconnect timeout, respectively. Thus, temporary node failures and
interrupted links can be compensated with low overhead.

2.3 MAC Protocols for Wireless Sensor Networks

Section 2.2.4 has briefly sketched that different MAC protocols have been used in
data-gathering applications. However, TDMA has recently become the first choice,
but different flavors have been developed and deployed. Therefore, this section will
provide a general comparison of data-gathering MAC protocols, followed by a detailed
look at TDMA scheduling variants and slot assignment.

2.3.1 Comparison of MAC Protocols

Research in the field of wireless sensor networks has brought up a vast variety of
MAC protocols [DEA06]. In general, two different classes can be identified: CSMA
and TDMA. The former basically relies on carrier sensing—to assess the channel—
before starting a transmission. Reception is done whenever a signal is detected. As this
implies extensive idle listening, advanced schemes use synchronized schedules: During
sleep periods, nodes switch off their transceiver. Only in between those periods, nodes
(simultaneously) assess the channel and may start transmission or reception. TDMA
protocols divide time into rounds that consist of slots of usually same length. Slots are
assigned to nodes (or links), and a node may only start transmission in its own slot(s).
Appropriate scheduling completely prevents collisions; exchanging schedules between
neighbors reduces overhearing and idle listening. However, TDMA requires tight node
synchronization and increases latency in case of low traffic. Recently, hybrid protocols
have been proposed. They enable nodes to employ TDMA or CSMA depending on
local traffic. In the following, representatives of the different types of MAC protocols
will be portrayed and analyzed.

Initially, contention-based (CSMA) protocols were considered mainly [WC01].
Early adoptions for wireless sensor networks are S-MAC [YHE02, YH04] and B-

17

2 State of the Art

MAC [PHC04]. S-MAC is a port of 802.11, whereas B-MAC has been tailored to the
needs of wireless sensor networks. Among its design goals are low-power operation,
effective collision avoidance, efficient channel utilization, and adaptivity to changes
in radio connectivity. E.g., it makes use of low-power listening and scheduled sleeping
for energy conservation; collision avoidance is addressed by carrier sensing and back
offing. However, being designed as a general-purpose MAC protocol, B-MAC reveals
weaknesses in a many-to-one paradigm with a single destination. Firstly, it severely
suffers from collisions [RR08, AHM�06]. Secondly, it generates high latency, because
sleep schedules make no use of the tree structure used in a data-gathering application.
Additionally, it is susceptible to overhearing due to the same reason. D-MAC explic-
itly solves those issues by means of advanced schedules [LKR04]. Those are set up by
taking the depth of each node in the routing tree into consideration. Since D-MAC
is contention-based, it conserves the ease of adding new nodes to the network, but is
still prone to collisions. Overhearing and idle listening are likewise problematic.

Since contention-based MAC protocols are likely to suffer from collisions, this may
lead to considerable forfeits in throughput under heavy traffic [AHM�06, WR05].
The hybrid Z-MAC [RWAM05] protocol tries to solve this shortcoming by falling
back to a TDMA schedule, if congestion is discovered. Another hybrid approach,
the Funneling-MAC, has been shown to outperform both B-MAC and Z-MAC in a
real-world data-gathering experiment with 45 nodes [AHM�06]. This is achieved by
accounting for the funneling effect, which can be explained as the increase of network
traffic with closeness to the sink. To overcome funneling, TDMA is used on nodes close
to the sink and CSMA in the outer, less dense regions of the network. For this, the
sink sends out beacons with transmission power adapted to the needs of the network.
Nodes receiving these beacons consider themselves close to the sink and switch to
TDMA. Since both TDMA and CSMA are used in the same network, a complicated
scheduling mechanism is used. Its most important task is to avoid interference, which
imposes a considerable problem on nodes on the edge of the TDMA region, since they
must operate both MACs. In conclusion, Funneling-MAC outperforms B-MAC and
Z-MAC at the expense of a considerable amount of complexity. Additionally, none
of the inherent problems of CSMA—collisions, overhearing and idle listening—have
been completely eliminated.

TDMA protocols have recently drawn increasing attention, as they are generally ca-
pable of solving those problems. NAMA [BGLA01] produces unique slot assignments
in a distance of two hops. However, it is neither energy-aware nor free of overhearing.
Built on its foundation, TRAMA [ROGLA03] has been designed to overcome those

18

2.3 MAC Protocols for Wireless Sensor Networks

deficiencies. Slots are scheduled traffic-adaptively, and energy-efficiency is achieved by
allowing nodes to go into sleep modes, if they are not sending or receiving any data.
This is accomplished by exchanging transmission schedules between nodes in ran-
dom access periods (comparable to pure CSMA). For successful exchange, all nodes
have to be listening during those phases. In contrast to this, FLAMA [ROGLA05],
an improvement over TRAMA, relies on traffic information provided by the under-
lying application. As simulations have revealed [ROGLA05], FLAMA outperforms
TRAMA and S-MAC in terms of energy-efficiency. Yet, there are two notable draw-
backs. Firstly, FLAMA (like NAMA and TRAMA) is likely to produce collision-
afflicted schedules [ZHSA05]. Secondly, FLAMA uses random access periods, which
unnecessarily compromise energy-efficiency.

Another TDMA protocol designed for data-gathering is TDMA-EC [RXMC05].
Slots intended for sending and receiving are staggered with respect to node depths,
so that continuous flows of packets from source to sink are maintained, the intention
being a massive reduction in latency as compared to D-MAC. Although TDMA-EC
has been shown to achieve energy-efficiency comparable to D-MAC [RXMC05], it
still produces overhead due to random slot selection and broadcast messages during
actual data-gathering.

The application described in [TW07a] (cf. Section 2.2.4) makes use of a static
TDMA scheme with one slot for each node. Assignment is done according to node
identifiers, so that each node can directly determine its own slot and the ones of its
children in the routing tree. As a result, collisions, overhearing, and idle listening are
completely avoided. However, latency, throughput, and buffer usage are particularly
affected by growing network size. An improvement has been reported by the same
authors in [TW07b]: Nodes can give up their slots, so that other nodes along the
path to the sink can reuse them. Different strategies of where to reuse slots have
been discussed and analyzed by simulation. Since notifying nodes about additional
slots implies additional information exchange, this approach is a tradeoff between
throughput and energy-efficiency. Note that this modification is possible solely in a
two-phase data-gathering system.

Table 2.2 gives an aggregated overview of the strengths and weaknesses of different
MAC protocol types. In general, TDMA protocols have been shown to outperform
contention-based MAC protocols in data-gathering applications regarding energy con-
sumption [SYL06, ROGLA05, WR05]. However, the presented TDMA protocols re-
veal significant differences, particularly in terms of scheduling. Many protocols offer
dynamic slot reassignment, which is required in case of changes in the routing tree.

19

2 State of the Art

Pure CSMA Scheduled CSMA Hybrid TDMA

Overhearing aa a l ` / ``
Idle Listening aa a l ` / ``
Collisions a a l `

Protocol Overhead ` / `` l a a

Traffic Adaptivity ` l ` l

Node Adding `` ` a a

Energy-Efficiency aa a l `

� Table 2.2: Comparison of MAC protocols for wireless sensor networks

Static schedules promise higher energy-efficiency, since overhearing and idle listening
can be completely prevented. However, they pose the restriction of static routing trees
as constructed at the beginning of each collection phase in a two-phase data-gathering
strategy.

2.3.2 TDMA Slot Assignment for Data-Gathering

TDMA scheduling, i.e., slot assignment, in data-gathering applications widely varies,
as can be obtained from the examples in Section 2.3.1. In order to compare the per-
formance of different approaches in a data-gathering context, a general classification
is desirable. Only static and semi-static slot assignments will be considered, because
the traffic pattern is a priori known in a two-phase data-gathering application with
periodically rebuilt trees. Thus, efficient slot assignment does not require dynamic
components. Note that a scheme with static slot assignment but dynamic access is
regarded as dynamic (cf. [RXMC05]).

Inspired by [TW07c], it is useful to categorize slot assignments by the size of the
overall set of different slots S required. Here, R � |S| is called the round length.
The categories are as follow: A Type I slot assignment seeks to minimize R and thus
has less slots than there are links in the routing tree. A Type II slot assignment has
exactly as many slots as there are links in the tree; and finally, a Type III assignment
has more slots than there are links in the tree. Using the size of the routing tree T
as a reference has two reasons: Firstly, communication in the routing tree is done
only between parents and their children. Hence, communication is directed and it is
natural to speak of link assignments (cf. [Ram97]). Secondly, it is more convenient
and less confusing, because the sink does not send any data and therefore needs no
dedicated slot. Particularly, note here that |T | � N � 1.

20

2.3 MAC Protocols for Wireless Sensor Networks

Type I Type II Type III
k-hop interference standard enhanced plain load aware

Assignment Strategy static static static semi-static static static
Assignment Overhead a a ` / `` ` / `` ` `

Slot Storage `` `` `` a `` ``

Reusing Slots 3 3 – (3) – –
Collisions Possible 3 – – – – –
Load Aware – – – (3) – 3

� Table 2.3: Comparison of static slot assignment schemes

In the remainder of this section, the named three categories of slot assignments
will be examined in detail. Table 2.3 summarizes their main characteristics.

Type I Minimizing R aims at keeping latency low and throughput high, whereas in-
dividual node loads are not considered. Since every node or link is assigned one slot,
storage is achieved with a small memory footprint. However, minimizing R is NP-
complete [EV05], so that different heuristics have been developed to approximate the
optimum Type I slot assignment. They can be divided into two classes. Firstly, k-hop
neighborhood information can be used to uniquely assign slots within k hops. This is
equivalent to the corresponding coloring-problem of the graph G. Secondly, an inter-
ference calculation algorithm that, e.g., takes actual receiving powers of signals from
remote nodes into consideration could be used. Note that using the k-hop neighbor-
hood information can be thought of as a simplification of its interference-considering
counterpart.

Ramanathan presents a unified framework for centralized slot assignment, which
particularly includes link coloring [Ram97]. Three different algorithms are presented,
where the most relevant is RAND, because a distributed version, called DRAND, is
available [RWMX06]. DRAND is based on a randomized approach in order to pick the
next link to color. Although it is a node coloring algorithm, link coloring could be also
achieved. Time complexity and message overhead of DRAND are in the magnitude
of the largest 2-hop neighborhood of a network.

Bryan et. al. propose the Color Constraint Heuristic (CCH) for slot assign-
ment [BRD�07]. Unlike DRAND, they use a metric to determine the next node
to color. Each node calculates the weighted sum of already colored nodes in its 2-hop
neighborhood. The node having the highest CCH value is considered the most con-
strained node and thus proceeds in picking a new color. The distributed version of
CCH (DSA-CCH) does not perform global node ordering for assigning colors, because

21

2 State of the Art

this would lead to exhaustive message exchange and energy consumption. Instead,
nodes calculate a coloring score and compare it with a threshold; from this a node
figures how many neighbors must be colored before it may pick a color itself. Simula-
tion results reveal that DSA-CCH consumes less slots and energy than DRAND, but
needs more time for the slot assignment to finish. Yet, DSA-CCH has been shown
to fail in some combinations of thresholds and topologies. A variant of DSA-CCH,
DSA-AGGR, uses the routing tree to assign colors so that parents receive higher
colors than their children. This extension is meant to minimize latency [CMGL05].
An example of a Type I slot assignment using CCH is presented in Figure 2.4.

Here, the choice of k � 3 leads to a lower probability of collisions [Grö04]. Slot 0 is
assigned to links pv0, v1q and pv9, v10q. It could not be assigned to pv5, v10q, since v10

is a 3-hop neighbor of v1. Note that the link pv0, v1q is the only connection between
the sink and the rest of the network. Hence, throughput at the sink is σ � 1

9
.

{0
}

{7} {2}

{1} {3}

{4}

{5}

{8}

{6} {2}

{0}

{7}

{1}

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

� Figure 2.4: Type I slot assignment, N � 14, R � 9

Further strategies on finding minimum R exist, e.g. [GDP05, BGLA01], but all
have in common that they do not produce collision-free schedules [Grö04]. Grönkvist
shows by simulation results that there is no k for which collisions can be completely
avoided. A remedy is to employ slot assignments taking the SINR (cf. Section 2.1.3)
into consideration. Two algorithms developed to achieve this goal are STDMA [DG07]
and the radio interference detection (RID) protocol [ZHSA05]. Although a lightweight
derivative of RID exists, those protocols have considerable drawbacks. They are more
complicated concerning implementation and work correctly, only if nodes are able

22

2.3 MAC Protocols for Wireless Sensor Networks

to accurately measure signal strengths produced by all remote nodes. Variations in
signal strengths or imprecise measurements will consequently lead to collision-afflicted
schedules. Besides, measured signal strengths have to be exchanged

Type II The main driver in assigning one fixed slot to each link is to minimize
assignment overhead [TW07a]. In the easiest case, every node uses its unique identifier
for slot assignment. Here, no overhead is produced. In a more advanced scheme with
little overhead, a depth-first search on T can be performed to assign slots in ascending
or descending order from leafs to the sink. The former reduces latency, the latter buffer
usage. None addresses individual node loads. Using this method keeps assignment
overhead low. However, Type II exhibits a severe disadvantage in large or sparse
networks. In this situation, throughput is dramatically reduced [DML03] due to the
high number of slots and the sink’s low number of children. The immediate children
of the sink have to forward all data inside their subtrees, but only have one slot, while
R grows with the number of nodes N . Hence, throughput decays with 1

R
.

An enhanced version of a Type II slot assignment is described in [TW07b]. As
before, there is one distinct slot for each link in the routing tree; but slots may be
reused by other nodes on the same path from the original slot owner to the sink,
when the former finishes sending. This increases throughput, but imposes a higher
energy consumption, because information about reusable slots has to be sent via
radio. Separate packets and piggybacking on data packets are possible methods. Two
discussed strategies are as follows. Firstly, a node could keep every second slot it
received from its children and forward all other slots into the direction of the sink.
Secondly, a node vi at depth hi could keep every hi’th slot. In both cases, children
of the sink keep every received slot. The second solution has the advantage of slots
being more frequently reused close to the sink, aiming at the reduction of latency and
increase of throughput.

Figure 2.5 illustrates an example Type II slot assignment with ascendingly ordered
slots. During depth-first search, v13 is the first visited leaf and link pv12, v13q is thus
assigned slot 0. Slots 1 and 2 go to the other links on the same path until branching
at v6. Slot 3 is assigned to the link of the next leaf v7. Compared to the earlier Type I
assignment, the bottleneck at link pv0, v1q has become more severe: Throughput at the
sink is reduced to σ � 1

13
. Enhanced Type II considerably attenuates this problem, as

slots could be reused preferably on the link(s) to the sink; finally resulting in σ � 1.

23

2 State of the Art

{1
2}

{11} {10
}

{9} {8}

{4}

{7}

{3}

{2} {1}

{6}

{5}

{0}

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

� Figure 2.5: Type II slot assignment, N � 14, R � 13

Type III The design goal of a plain Type III slot schedule is to assign slots with
respect to node loads, i.e., each node is assigned exactly as many slots for sending
as it has for receiving plus one slot for its own data [TW07c]. In particular, a leaf
node or its link to the parent, respectively, is assigned one slot. Any other node vi is
assigned one slot for each node within its subtree. A recursive expression of this is
given by |Si| � 1 �°

vjPCi
|Sj|. To prevent interference, all sets have to be pairwise

disjoint. As a result, each node vi in the network will contribute hi slots, so that the
number of slots totally consumed will quickly increase with growing N . However, by
assigning sets of slots in consecutive sequences during a depth-first search, each node
solely has to save its first slot and the size of the set. As a result, constant storage
space is achieved, but slot assignment produces some overhead.

An advantage of the plain Type III scheme is that during each round, the through-
put at the sink is N�1

R
, which does not depend on the sink’s number of children.

This is because each child of the sink has exactly as many sending slots as there are
nodes within its subtree (including itself). Again, slots may be assigned in ascending
or descending order from leafs to the sink. Note that in an descending order, the
children of the sink will be the first sending nodes in each round. Hence, they must
have at least as many packets as they have slots, or slots will be wasted, i.e., they
cannot be used. An ascending order, in contrast, requires large buffers, as each node
collects data from its subtree, before it forwards data itself. Figure 2.6 depicts a plain
Type III slot assignment with ascending slot order based on the same depth-first

24

2.3 MAC Protocols for Wireless Sensor Networks

search as in the Type II example in Figure 2.5. It produces considerably more slots,
but is capable of alleviating the bottleneck at link pv0, v1q. The throughput at the
sink is raised to σ � 13

46
.

{3
3,

. .
. ,

45
}

{32} {31
}

{21, . . . , 30} {17,
. . .

, 20
}

{7, . . . , 11}

{14, 1
5, 1

6}

{6}
{3, 4, 5} {1, 2}

{13}
{12}

{0}

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

� Figure 2.6: Type III slot assignment, N � 14, R � 46

Data-gathering is considered to be a two-phase system with periodical collection
phases. If a node vi senses and stores different amounts of data than other nodes,
or if vi experienced a link failure during the last collection phase, its initial buffer
fill level Li may differ from other nodes’ fill levels. To account for this, the authors
of [TW07c] propose a load-aware approach that makes use of Li. By introducing the
constant λ, the advanced Type III assigns |Si| �

P
Li

λ

T�°vjPCi
|Sj| slots to a node vi.

The authors show that this approach can effectively reduce runtime in case of variable
loads.

25

2 State of the Art

26

Chapter3
Efficient TDMA Schedules for

Data-Gathering

In this chapter, the objectives of this thesis will be outlined. Furthermore, an an-
alytical view on the TDMA schedules presented in Chapter 2 is provided. A new
scheduling scheme is introduced and compared with those existing solutions. It fol-
lows a discussion of metrics and parameters for evaluating the suitability of different
TDMA schedules in a data-gathering application.

3.1 Objectives

Data-gathering is a task frequently performed by wireless sensor networks. As carried
out in Chapter 2, energy-efficiency is of vital importance to prolong the lifetime of
a network. Closely related to this is the choice of the data-collection strategy. If the
gathered data is delay-tolerant, a two-phase scheme as presented in Section 2.2.1 is
favorable. Between two sensing phases, a collection phase is employed: A tree is built
and then used to forward all data to the sink.

This strategy particularly disencumbers from tree maintenance, and tree construc-
tion has been widely discussed. Here, breadth-first search has been found to produce
good results (cf. Section 2.2.2) and can thus be used for tree construction without
further examination. In contrast, data collection using different TDMA schedulings,
as outlined in Section 2.3.2, should be closer investigated. In Section 2.3.1, fields of
research on different MAC protocols have been presented. However, none of those
works covers the comparison of different types of TDMA scheduling approaches in
a data-gathering application. TDMA scheduling generally promises to prevent idle

27

3 Efficient TDMA Schedules for Data-Gathering

listening, overhearing, and collisions. Yet, the described types of slot assignments
exhibit striking differences. Hence, analyzing and comparing them in a two-phase
data-gathering application is eligible. For this purpose, simulation is the method of
choice to obtain results under realistic conditions. In this thesis, a suitable simula-
tion framework is designed and implemented in order to finally conduct a detailed
comparison and examination.
However, before this task can be performed, an analytical investigation of the dif-

ferent types of TDMA schedules is useful in order to identify parameters and metrics.
For this reason, the three existing types of slot assignments will be discussed in the
following. Inspired by the outcome of this, a new slot assignment will be presented.
It is tailored to overcome the disclosed deficiencies of the existing approaches. Fi-
nally, parameters and metrics for comparing the described scheduling types will be
pinpointed.

3.2 Analytical View on Existing TDMA Schedules

TDMA scheduling approaches can be divided into three categories, as explained in
Section 2.3.2. Their distinct characteristics lead, in the first place, to a different
number of slots produced. This affects the number of slots assigned to individual nodes
and the overall round length. Both are relevant for the runtime T , which is defined as
the total time required for collecting all data stored in the network. Additionally, slot
assignment may have an impact on buffering issues and the consequences of packet
loss. Hence, an analytical view on those topics promises a better understanding of
the differences and their consequences. It will also help to identify necessary metrics
and parameters.

3.2.1 Prerequisites

In order to estimate runtime T and the total number of slots R consumed by a slot
assignment approach, a couple of notations are advantageous. They will be introduced
and explained in the following.
At first, a tree can be characterized by its shape, particularly its depth h and its

maximum degree C. In a minimum-depth tree with maximum degree C, each node
has minimum possible depth h�. This implies that there are C` nodes in each level
` � 0, . . . , h � 1 of the tree. Figure 3.1(a) shows an example minimum-depth tree
with N � 9 and C � 3. Equation 3.2 yields h� � 2, which complies with the shown

28

3.2 Analytical View on Existing TDMA Schedules

tree. A minimum-depth tree is called a complete tree, if there is at most one node at
level h�1 having neither 0 nor C children. The difference between a minimum-depth
tree and the corresponding complete tree is depicted in Figure 3.1(b). If the number
of nodes at level ` � h is C`, that tree is called a full tree. Figure 3.1(c) displays a
full tree with same depth and C as before. The additionally needed nodes to fill the
tree are light-colored.

(a) minimum-depth tree (b) complete tree (c) full tree

� Figure 3.1: Different tree shapes with minimum depth

The minimum depth h� of a tree having N nodes is that of the corresponding
minimum-depth tree. Making use of the fact that a minimum-depth tree has at most
as many nodes as the corresponding full tree, gives

N ¤
h�¸
`�0

C` � Ch��1 � 1

C � 1
(3.1)

Transformation yields
h� � rlogC pN pC � 1q � 1qs� 1 (3.2)

3.2.2 Number of Slots

The number of slots a node can use for sending and receiving has two impacts:
Firstly, storage of slots must be considered, and, secondly, their ratio influences buffer
utilization and management. The round length determines the per-node throughput
and thus particularly the throughput at the sink. Hence, overall runtime for data
collection can be retrieved from the number of slots. As a result, looking at the
number of slots has to be the first step.

Type I Minimum slot assignment, independent of whether using k-hop or interfer-
ence information, is generally based on spatial slot reuse at some minimum distance.
A simplified view is to require unique slot assignment inside a circle of radius ηRcom

29

3 Efficient TDMA Schedules for Data-Gathering

with η ¡ 1. The number of nodes inside this circle determines the minimum number
of slots required in a Type I slot assignment. By means of the node density, the av-
erage number of nodes inside a communication circle is given as % (cf. Section 2.1.2).
It follows that the round length RI of Type I is proportional to η2%. However, this
estimation is not very precise, because the number of neighbors in a network may
considerably vary. Hence, safe lower and upper bounds are given by

% ¤ max
i
|Ni| � 1 ¤ RI ¤ N � 1 (3.3)

Type II If every link in the tree T is assigned exactly one slot, the number of slots
is always given by

RII � |T | � N � 1 (3.4)

Type III Given the plain slot assignment strategy as presented in Section 2.3.2 on
page 24, the number of slots consumed is closely related to the tree structure. Every
node produces one slot for each hop to the sink, so that we find

RIII �
¸
viPV

hi (3.5)

The sum takes its maximum value, if the tree is degenerate. It follows that

RIII ¤
N�1̧

`�1

` ¤ N2 �N

2
(3.6)

The minimum is achieved in a minimum-depth tree:

RIII ¥
h��1̧

`�1

` C` � h�

�
N �

h��1̧

`�0

C`

�
¥ N

�
h� � C

C�1

�
(3.7)

This theoretical minimum can usually be achieved for small N only, as creating a
minimum-depth tree is not possible, if % does not increase with distance to the sink
(cf. Section 2.2.2).
For the load-aware variant of this slot assignment, Equation 3.5 has to be multiplied

with
P
L
λ

T
in the case of the same initial buffer fill level L for each node. If initial buffer

fill levels vary among nodes, there is no easy way to give a good estimation without
an accurate knowledge about the Li of each vi. However, a rough upper bound can
be derived by multiplying Equation 3.6 with maxi

P
Li

λ

T
(cf. Section 2.3.2 on page 24).

This is true, because each node accounts for
P
Li

λ

T�hi slots. Taking the maximum and

30

3.2 Analytical View on Existing TDMA Schedules

inserting it into Equation 3.6 gives the stated upper bound. Accordingly, a lower
bound is obtained by multiplying Equation 3.7 with the minimum mini�0

P
Li

λ

T
.

3.2.3 Memory Usage

Each node in the network must store its own slots and the ones used by its children to
prevent idle listening (cf. Section 2.2.1). By combining the findings of Sections 3.2.2
and 2.3.2, a brief discussion of required memory for slot storage can be conducted.

Type I Since every node (except the sink) has exactly one slot for sending and at
most C for receiving, it must store at most C� 1 slots. Thus, memory usage is linear
in terms of C.

Type II As long as slots are not reused, it suffices to store one slot for sending and
up to C ones for a node’s children. Yet, as soon as slots are reused by other nodes, a
node vi may have to store up to |Ti| slots. In general, sets of slots will be fragmented,
so that there is no easy way to store them. As no pattern inherent in those sets can
be foreseen, the benefit from compression will be small. Besides storing, this problem
also affects the forwarding of slots in the routing tree. In order to keep packet size
low, it may only be possible to forward small numbers of slots at a time.

Type III Although a Type III slot assignment strategy produces considerably more
slots than the other types, slot storage is linear in terms of C. Each node must store
one set of slots for sending and up to C sets for receiving. Since those sets consist
of consecutive slots, it suffices to store the first slot and the size of each set. Hence,
storage consumes at most twice the amount of memory as compared to Type I.

3.2.4 Runtime Analysis

The runtime T of a data-collection phase is a crucial characteristic, because it deter-
mines the maximum sampling or sensing frequency of a node and thus the network.
Knowing an estimation of the minimum possible runtime allows for a first performance
evaluation of the different types of slot assignments. Furthermore, it is useful when
analyzing results of a real deployment or a simulation. In the following, minimum
runtime of the three different scheduling types will be roughly estimated. For this,
a tree of depth h ¥ 2 will be assumed, as slot assignments will not differ otherwise.
Packet loss, buffer overflows and underruns will not be considered during calculation,

31

3 Efficient TDMA Schedules for Data-Gathering

but their possible influence will be discussed separately in the following section. Run-
time T will be expressed as the number of slots required for data collection, as it is
assumed that slots have equal length and allow the transmission of exactly one data
packet.

Type I One slot is assigned to each link of the tree, and slots are spatially reused.
All data collected by the sink has to pass one of its children. Hence, overall runtime
depends on the largest subtree, because the corresponding child of the sink will need
the most time to forward all data. However, assuming a tree in which the C0 children
of the sink have equally sized subtrees, runtime takes its minimum:

TI ¥ RI pN � 1qL
C0

¡ % pN � 1qL
C

(3.8)

This equation points out that the number of immediate children of the sink influ-
ences runtime considerably. In contrast to the influence of the sizes of those subtrees,
their individual shape, e.g., depth and balance, does not affect overall runtime.

Type II The runtime of a standard Type II slot assignment is above that of a Type I
assignment, because slots are not reused. Thus, it is only of interest in very small or
dense networks, where Type I produces approximately the same amount of slots as
Type II. According to these facts, discussion is restricted to the enhanced version.
Estimation of the minimum runtime of an enhanced Type II slot assignment can

be done by simply counting the number of required transmissions. This is equivalent
to summing up the product of each node’s initial buffer fill level and its depth in a
minimum-depth tree. The fundamental idea behind this procedure is to assume that
slots can be immediately reused on a new link (on the same path), if no more packets
have to be sent via the old link. In this case, slot utilization reaches its optimum,
and, hence, minimum runtime is achieved. By assuming a common initial buffer fill
level L, estimation becomes basically the same as in Equation 3.7.

TII ¥
¸
viPV

Lhi
p3.7q¥ NL

�
h� � C

C�1

�
(3.9)

The main difference to the runtime of Type I is that h� has superseded %, since slots
are not spatially reused by Type II. Hence, the actual depth has a decisive impact
on runtime. In case a minimum-depth tree cannot be assumed, it may considerably
increase. Additionally note that explicit knowledge about the slot reuse strategy is

32

3.2 Analytical View on Existing TDMA Schedules

not required for the estimation. It is not obvious, where slots should be actually
reused in order to achieve minimum runtime.

Type III In a plain Type III assignment, a link is assigned as many slots as there
are nodes in the corresponding subtree. If slots are assigned ascendingly from leafs to
the sink (indicated by Ò), one packet from each node is collected per round. Hence,
L rounds are required for collecting all data. Again, assuming a minimum-depth tree
leads to the lowest possible runtime, since it generates the minimum amount of slots.

TIIIÒ ¥ RIIIL
p3.7q¥ NL

�
h� � C

C�1

�
(3.10)

Note that this equation gives the same result as Equation 3.9. This is not a surprise,
since both calculate the minimum number of slots required to collect all data without
spatially reusing slots. Assuming that each slot can be actually used to send a packet,
the results must be the same.

If slots are assigned in descending order (indicated by Ó), runtime increases.
L rounds are required for the last packet of a leaf being sent to the parent. The
latter will have its next sending slots in the following round. Therefore, another
h��2 rounds plus a fraction of an additional round are required, until the last packet
from a leaf arrives at the sink. At the end, no complete round is needed, since only
the children of the sink have to send packets and their slots are the first in a round.
In order to simplify estimation, this fraction is left out.

TIIIÓ ¥ RIII pL� h� � 2q ¥ N pL� h� � 2q �h� � C
C�1

�
(3.11)

Estimating runtime for load-aware Type III is not performed, because varying
initial buffer fill levels make things complicated. However, if initial buffer fill levels
do not vary among nodes, behavior is basically the same as if using the plain version:
Round length and the number of slots at each node’s disposal are basically increased
by the factor L

λ
. Hence, the number of rounds required decreases by approximately

λ
L
, so that both effects cancel out.

3.2.5 Buffering Issues

Buffering issues have not been addressed so far, although underruns and overflows
may have a severe impact on actual runtime and energy-efficiency. A closer look at
this will be presented in the following.

33

3 Efficient TDMA Schedules for Data-Gathering

Type I Non-leaf nodes have one slot for sending and at least one slot for receiving. In
the absence of packet loss, buffer underrun cannot occur. Hence, a node can always
use its sending slot, as long as there is data left in its subtree. In contrast, buffer
overflow is likely, depending on the load of a node. During each round, a node may
have to buffer up to C � 1 new packets. If a node experiences a buffer overflow, this
implies that it will be restricted to accept no more than one packet total from all
of its children in future rounds. As a result, flow control is required to avoid futile
transmissions and thus wastage of energy (cf. Section 2.2.3). However, flow control
must prevent buffer underruns in order to preserve low runtime.

Type II As long as slots are not reused, buffer utilization is according to Type I.
Reusing slots may completely change the picture. Depending on the shape of the tree
and the reuse strategy, buffer underrun and overflow may occur. Given a network
with a tree as depicted in Figure 2.5 on page 24, v1 may reuse slots 10 and 11 for
sending, as soon as v2 and v3 have forwarded all their data. While v1 has three slots
for sending, it may have just one slot for receiving (from v4). This may consequently
lead to a buffer underrun at v1 and increased runtime, since two slots per round
cannot be used. On the other hand, buffer overflow would be possible, if v4 reused all
slots of its subtree to forward data to v1.

Type III Nodes use consecutive slot sets for sending and receiving packets. If slots
are in ascending order from leafs to the sink, a node will receive packets from its
children before it can forward data. In each round, and particularly in the first, of a
data-collection phase, the buffer of a node must be large enough to store all incoming
packets in addition to the already present ones. If this requirement is violated, the
corresponding node vi is forced to drop received packets. This implies that its children
have to resend the corresponding data, and flow control is required. In this situation,
subtrees of vi may forward their data at different paces. If all packets stored in one
subtree have been forwarded, while a different one has not finished sending its packets,
all slots used in the former cannot be used any longer. In addition, vi still has sending
slots for that already finished subtree. At some time, when the number of incoming
packets and those already stored in its buffer falls below the number of sending slots
available, vi can only use a fraction of its sending slots. This leads to a chain reaction,
because its parent will receive less packets from vi than there are slots assigned to that
link. Therefore, that parent has less packets to send, and this problem propagates to

34

3.2 Analytical View on Existing TDMA Schedules

the sink. Besides the severe impact on runtime, idle listening will occur, if parents
are not informed by their children about unused slots.

By ordering slots descendingly, buffer utilization is alleviated. During the first round
of a data collection phase, each node forwards more packets than can be received
during the same round. Hence, it is sufficient if all nodes may buffer as many packets
as they can receive per round. However, if a node has a lower initial buffer fill level
than sending slots, some of them will be wasted during the first round. This will cause
a chain reaction as discussed above.

3.2.6 Packet Loss and Link Failure

Due to the lossy nature of wireless sensor networks, packet loss and link failures must
be considered. However, there is no easy way to model those issues analytically and
quantify their impact, but a theoretical discussion can be used in order to identify
possible sensitivities.

Type I The short round length keeps delay comparably low in the case of packet
loss; this is true, even if only one link suffers from losses. If all links in the network
are equally exposed to losses, runtime will presumably scale with the inverse packet
reception rate, and buffering will not be considerably affected. Short disturbances on
a link may be implicitly compensated by the time between two sending slots of the
same node. Link failures will not severely compromise the overall runtime, because
there is just one sending slot dedicated to each link and slots are spatially reused.
Thus, even if a large subtree becomes disconnected from the tree, it can be expected
that only few slots will be wasted.

Type II Due to the increased round length as compared to Type I, packet loss has
a higher impact on runtime. Depending on the slot reuse strategy, packet loss and
particularly link failures may lead to a higher probability of buffer underruns. This
situation occurs, if slots are reused in a way that provides a node with more sending
slots than its children have in sum. Short link disturbances can be overcome by the
fair round length. Permanent link failures imply the wastage of slots, because slots
are unique within a subtree. Here, graveness depends on the size of the disconnected
subtree.

Type III The huge round length makes Type III very sensitive to packet loss and
link failures. First of all, one lost packet at a leaf node may prolong runtime by a

35

3 Efficient TDMA Schedules for Data-Gathering

complete round. In addition, a lost packet will render all remaining slots dedicated
to the same path from the initial sender bootless. This is true, because a node vi at
depth hi accounts for hi slots, precisely one slot for each link on the path to the sink.
Hence, packet loss and link failure will eventually result in a massive wastage of slots,
even if only a single leaf is affected. Besides, temporary losses on one link may affect
many slots assigned to the same link, as those slots are consecutive. As a result, a
node may have to wait for the next round in order to make up for those unused slots,
leading to a long delay.

3.2.7 Summary and Comparison

The previous analysis, in combination with the descriptions in Section 2.3.2, shows
that all scheduling types have their strengths and weaknesses.

Type I leads to a small number of slots that only depends on the network den-
sity. However, slot assignment requires communication overhead and collisions are
possible. Runtime is affected by both the number of nodes and network density. If
the latter stays constant, runtime increases linearly with network size, which enables
Type I to perform well regardless of it. However, the number of children of the sink
and the sizes of their subtrees influence runtime. Hence, Type I may perform poorly,
if the sink has few children, or if there is a particularly large subtree. Depending
on node loads and buffer sizes, Type I may suffer from buffer overflows, which re-
quire additional overhead in order to avoid futile (re)transmissions. Packet loss and
interrupted links do not tend to severely influence runtime.

Enhanced Type II offers easy slot assignment, but imposes communication overhead
needed for reusing slots. In addition, slot storage requires much space, so that Type II
cannot be used in large networks. As the round length exceeds that of Type I, packet
loss has a higher impact on runtime. Since the size of each subtree corresponds to
the number of slots used within, reusing slots leads to good runtime expectations.
In particular, this aspect may alleviate the influence of unbalanced trees. However,
runtime is directly affected by the depth of the tree. Type II is prone to both buffer
overflows and underruns, which may lead to communication overhead and higher
runtime. Due to the complicated runtime behavior concerning slot reuse, no precise
forecast on the influence of load and buffer fill levels can be given. Furthermore, it is
not clear how to set up an optimal reuse strategy.

Round length is critical in a Type III slot assignment. With increasing network size,
its margin grows extensively, as it is affected by the shape of the tree. The conse-

36

3.3 A New, Light-Weight TDMA Schedule for Data-Gathering

quences of the round length are manifold. Firstly, additional rounds may be required
in the case of packet loss. Secondly, interrupted links and disconnected subtrees will
lead to many unused slots. Both issues increase runtime, possibly beyond an accept-
able limit. A high round length implies that each node has many slots at its disposal
for sending and receiving. Their number grows rapidly with network size and tree
depth. In conclusion, buffer sizes must likewise increase, or else some slots cannot be
used. If slots are assigned in ascending order, this problem is particularly grave, as
nodes receive foreign packets before they send packets for the first time in a collection
phase. Ordering slots descendingly inhibits this problem, but, in contrast, leads to a
higher minimum runtime. Even if all those issues can be neglected, estimations have
shown that there exists a critical network size, from which on Type I will lead to a
lower runtime.

3.3 A New, Light-Weight TDMA Schedule for Data-Gathering

Due to the results of Section 3.2, we developed a new, light-weight TDMA schedule.
In general, it is a variant of Type III with a reduced number of slots and spatial
reuse. It equips each node with an amount of slots according to an estimation of its
expected load by means of the number of leafs in its subtree. In contrast to Type III,
sets of slots alloted to the same link are not consecutive. Thus, buffer usage and the
likelihood of overflows is minimized. Still, slot assignment can be achieved with low
overhead and a small memory footprint, comparable to Type III.

In the remainder of this section, a detailed view on this new assignment strategy is
provided. It is enriched by an analytical study for comparison with the results from
Section 3.2.

3.3.1 Spatial Path-Based Reuse Slot Assignment

The idea behind the spatial path-based reuse (SPR) scheme is to regard the routing
tree as an overlay of the paths from each leaf to the sink. Each of those paths is
handled separately during the slot assignment procedure, and the assigned sets of
slots are pairwise disjoint. The final slot assignment consists of the union of those
sets. Thus, if a node vi is on Pi paths, it will get assigned Pi slots. Here, Pi additionally
equals the number of leafs in the subtree of vi. This approach restricts the spatial
reuse of slots to nodes that are on a common path.

37

3 Efficient TDMA Schedules for Data-Gathering

In the following the basic principle will be introduced; details of the final algorithm
will be presented later. In its basic form, fixed-size sets of κ slots are alloted to each
path from a leaf to the sink. Since those sets do not overlap, inter-path collisions are
completely prevented. Slot assignment starts at the sink, and slots are reused after
every κ hops on a path, so that the total number of slots is reduced. Yet, reusing slots
may cause intra-path collisions, which can be avoided by choosing κ appropriately in
context of the network density and depth of the routing tree.
If κ is equal to the length of the path, then trivially no intra-path collisions can

occur. Thus, for the example depicted in Figure 3.2, κ need not be larger than 6.
However, with v0 being the sink, κ � 3 will most likely lead to collisions at v0, as
v1 and v7 would share the same slot and v0 is within the interference radius of v7.
In this situation, the path bends around a void. Now imagine another node placed
in a way, that it was inside the communication range of its parent v7, but slightly
outside the communication range of v0. In this situation, κ � 4 would still lead to
collisions. This example illustrates that voids may be of almost arbitrary size. Albeit
this phenomenon cannot be completely prevented, simulation has shown that it is
likely in sparse topologies only.
SPR can be efficiently implemented using the information gathered during tree

construction. With low effort, this method equips every non-leaf node in the network
with exactly as many sending slots as it has receiving slots. This has an outstanding
advantage: Buffer usage is considerably reduced, as between every pair of sending
slots there is just a single receiving slot. In the absence of packet loss, this implies
that buffer usage will never exceed the initial fill level by more than one. Even if
there is packet loss, buffer fill levels will not increase rapidly, as the balance between
actually incoming and outgoing packets can be expected to be affected slightly only.
Although a node gets assigned as many slots as there are leafs among its children,

there is no need to explicitly store them. The following slot assignment procedure
guarantees, that each node vi may use Pi slots with distance κ beginning with slot s0

i .

� Let tp0, . . . , pP�1u be the set of all paths from the leafs to the sink, ordered
according to a depth-first search.

� Assign the slots mκ,mκ� 1, . . . ,mκ� κ� 1,mκ,mκ� 1, . . . to the links on
path pm, starting at the sink.

Thus, a node vi can calculate the sequence of its slots from the smallest slot s0
i , Pi,

and κ. However, in order to identify interrupted links as described in Section 2.2.1,
vi has to map its receiving slots to its children. This can be achieved by vi storing

38

3.3 A New, Light-Weight TDMA Schedule for Data-Gathering

the number of paths Pj its child vj is on; ordered according to the pm. Finally, vi can
calculate the slots of its children. Because Pi is the sum of the Pj, it does not have
to be stored explicitly.

{0
, 4

, 8
, 1

2,
16

, 2
0}

{1} {5}

{9, 13, 17, 21} {18,
22}

{10, 14}

{19, 2
3}

{15
}

{11} {8}

{20}
{16}

{9}

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

� Figure 3.2: Basic SPR slot assignment with κ � 4, N � 14, R � 24

This distribution scheme exhibits a disadvantage. When there are paths having less
than κ � 1 nodes, some slots are not used; e.g., the path from the sink v0 to v2 in
Figure 3.2 has length 2, while κ � 4. Although this will not lead to an increase in
energy consumption, it will prolong the total runtime.

3.3.2 Effective Implementation

A simple remedy of the shortcoming identified in the previous section would be the
following. If a path pm has less than κ � 1 nodes, unused slots can be used for the
next path pm�1. Consequently, the sets of slots assigned to a path no longer have the
form tmκ,mκ� 1, . . . ,mκ� κ� 1u, and the slots of a single node no longer have the
constant displacement κ.

In order to assign precisely k slots to paths with length k κ, every node vi
calculates its displacement vector dir1s, . . . ,dirκs as follows. dirks is the number of
leafs in its subtree with depth k κ in T . For k � κ the vector denotes the number
of leafs in the subtree with depth κ or higher in T .

dirks �
$&
%|tvj P Fi : hj � ku| if 1 ¤ k κ

|tvj P Fi : hj ¥ ku| if k � κ
(3.12)

39

3 Efficient TDMA Schedules for Data-Gathering

Each node vi needs to store the displacement vectors dj of its children vj P Ci along
with a slot offset for each entry in dj. Those offsets are required, because paths are
firstly ordered by length and secondly according to a depth-first equivalent as before.
As shown in the following, this information together with the length of the round and
the depth of the nodes will be sufficient to compute the slots assigned to a node. The
space required for this information solely depends on κ and the number of children a
node has.

Since SPR relies on the routing tree, a three-step procedure can be used to assign
slots. Firstly, the sink starts generating the tree T via a breadth-first search. Sec-
ondly, the leafs of the just constructed tree T reflect the construction wave up to
the sink. During this contraction phase, every non-leaf node vi in the network stores
the displacement vector dj for each of its Ci children. Leaf nodes have no children
and their own di is uniquely determined by their own depth in T . Finally, the sink
acquires the displacement vectors of its children and thus its own. As a result, it
uses its own displacement vector d0 to calculate R � °κ

k�1 k d0rks. Thirdly, the slots
are actually assigned. Given its displacement vector d0, the sink calculates an offset
vector o0, where o0rks represents the smallest of all slots belonging to a path with
displacement k.

o0r1s � 0

o0rk � 1s � o0rks � k d0rks p1 ¤ k ¤ κ� 1q
(3.13)

Next, the sink calculates the offset vectors oj using the dj and oi � o0:

ojrks � oirks � k
¸
ṽPCi
ṽ vj

d̃rks p1 ¤ k ¤ κ, vj P Ciq (3.14)

Here, the values ojrks represent the smallest of all slots belonging to a path with
displacement k within the subtree of child vj. The operator refers to the required
ordering of children. Also note that the value of oirks is not used during actual slot
calculation, if dirks � 0.

The sink passes each oj to the corresponding child. In addition, each child re-
ceives R. Every node vi that receives an offset vector from its parent proceeds ac-
cordingly. First, it adopts the received offset vector as its own oi and generates for
each of its children a new offset vector oj using the same method as the sink, i.e.,
applying Equation 3.14. Then, R and the calculated oj are sent to the children vj of
vi. It suffices that vi additionally stores oi, because it can always reconstruct the oj

40

3.3 A New, Light-Weight TDMA Schedule for Data-Gathering

from oi and the dj, when needed. Finally, vi can calculate its own slots by means of
the oj and dj. The algorithm terminates, if all leafs have received their offset vector.

3.3.3 Explicit Slot Calculation

Each node vi has explicit knowledge about its depth hi in T , its own offset vector oi,
and its children’s displacement vectors dj. The vectors oj and di can be calculated
from those. While di is directly available on leaf nodes, inner nodes obtain di by

dirks �
¸
vjPCi

djrks p1 ¤ k ¤ κq (3.15)

Putting these pieces of information together, a node can determine its set of slots

Si �
!
s | 1 ¤ k ¤ κ, 0 ¤ d dirks : s � oirks � k d� phi � 1q mod k

)
(3.16)

and the ones of its children vj P Ci

Sj �
!
s | 1 ¤ k ¤ κ, 0 ¤ d djrks : s � ojrks � k d� hi mod k

)
(3.17)

Note that the modulo operator is effective and thus required only for k � κ,
because, by construction, paths with length k κ are assigned k slots. In addition,
the sink must not compute S0, because there are no slots assigned to it.

3.3.4 Example

In order to illustrate the explicit slot calculation as outlayed in Section 3.3.3, Fig-
ure 3.3 shows an example slot assignment for κ � 4. Displacement and offset vectors
have been calculated as described in Section 3.3.2, unused values of the latter are
marked with asterisk for clarity.

If v10 wants to calculate the set of slots S9 � ts0
9u its child v9 will use for send-

ing, this can be done by using Equation 3.17. With h10 � 4, o9 � p�, �, �, 16q, and
d9 � p0, 0, 0, 1q it follows

s0
9 � 16� 4 � 0� 4 mod 4 � 16

41

3 Efficient TDMA Schedules for Data-Gathering

{0
, 2

, 4
, 8

, 1
2,

16
}

{1} {3}

{5, 9, 13, 17} {14,
18}

{6, 10}

{15, 1
9}

{11
}

{7} {4}

{16}

{12}
{5}

v0

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

o0=(∗, 0, ∗, 4)
d0=(0, 2, 0, 4)

o1=(∗, 0, ∗, 4)
d1=(0, 2, 0, 4)

o2=(∗, 0, ∗, ∗)
d2=(0, 1, 0, 0)

o3=(∗, 2, ∗, ∗)
d3=(0, 1, 0, 0)

o4=(∗, ∗, ∗, 4)
d4=(0, 0, 0, 4)

o5=(∗, ∗, ∗, 12)
d5=(0, 0, 0, 2)

o6=(∗, ∗, ∗, 4)
d6=(0, 0, 0, 2)

o7=(∗, ∗, ∗, 8)
d7=(0, 0, 0, 1)

o8=(∗, ∗, ∗, 4)
d8=(0, 0, 0, 1)

o9=(∗, ∗, ∗, 16)
d9=(0, 0, 0, 1)

o10=(∗, ∗, ∗, 12)
d10=(0, 0, 0, 2) o11=(∗, ∗, ∗, 12)

d11=(0, 0, 0, 1)

o12=(∗, ∗, ∗, 4)
d12=(0, 0, 0, 1)

o13=(∗, ∗, ∗, 4)
d13=(0, 0, 0, 1)

� Figure 3.3: Advanced SPR slot assignment with κ � 4, N � 14, R � 20

Likewise, v10 can calculate its set of sending slots S10 � ts0
10, s

1
10u with Equa-

tion 3.16. From h10 � 4, o10 � p�, �, �, 12q, and d10 � p0, 0, 0, 2q it follows

s0
10 � 12� 4 � 0� 3 mod 4 � 15

s1
10 � 12� 4 � 1� 3 mod 4 � 19

Note that in this example, the impact of the modulo operator has taken effect for
slot reuse.

3.3.5 Analytical Evaluation and Comparison

In the following the same estimations as found in Section 3.2 will be derived for the
SPR slot assignment. They will be used to compare SPR with the other types of slot
assignments.

The number of slots consumed by SPR depends on the number of paths from the
sink to the leafs in T and their lengths. It can be calculated by using the set of leafs:

RSPR �
¸
viPF

min phi, κq (3.18)

Hence, for N ¡ κ, κ is the minimum number of slots. An upper bound for the round
length can be calculated by means of κ and a complete tree, as it has a maximum

42

3.3 A New, Light-Weight TDMA Schedule for Data-Gathering

number of leafs. The number of leafs in a complete tree is the sum of nodes at level h�

plus all nodes at level h� � 1 that have no children. Here, the number of nodes at
level h� is implicitly given by the difference between N and the number of nodes
below level h� (cf. Equation 3.1). It follows that

RSPR ¤ κ |F | ¤ κ
�
N � Ch��1

C�1
� Ch��1 �

Q
1
C

�
N � Ch��1

C�1

	U	
¤ CκN

C � 1
(3.19)

Runtime estimation for SPR can be generally based on that for Type II by neglect-
ing the spatial reuse of slots to begin with, i.e., assuming h � κ. A closer analysis
of the influence of reusing slots reveals that it leads to simultaneous transmissions
of packets on the same path. Hence, counting the number of required transmissions
must be done using the minimum of a node’s depth in T and κ. This is true, because
for any transmission at a depth greater than SPR, a slot is reused, and thus there al-
ready is another transmission using the same slot. As a result, that slot must only be
counted once. Again, a common buffer fill level L is assumed, and using Equation 3.7
immediately yields

TSPR ¥
¸
viPV

Lmin phi, κq
p3.7q¥ NL

�
min ph�, κq � C

C�1

�
(3.20)

Compared to Equation 3.9, h� is replaced by κ, if κ ¤ h�. Therefore, runtime
of SPR becomes independent of the tree depth and thus grows linearly with the
network size N only. This implies that SPR is capable of outperforming Types II
and III particularly in large networks. In addition, a small κ leads to the conclusion
that the runtime of SPR can stay below that of Type I.

Although Equation 3.20 discloses the minimum possible runtime, it leaves generally
open, where leafs must be placed and how many leafs are needed to achieve minimum
runtime. For κ ¤ h�, a minimum-depth tree leads to lowest runtime. Yet, the number
of leafs in a minimum-depth tree and their position may vary (cf. Figure 3.1), but
the influence is not clear. In addition, κ h� leads to the same minimum runtime
for a wide range of trees, because only κ hops of each node’s depth are taken into
consideration. Here, the influence of balance and depth of a tree are not obvious and
require further investigation.

As explained in Section 3.3.1, SPR assigns slots in a way that between each two
receiving slots, there is always one sending slot. Hence, buffer overflow is not likely
even in the presence of packet loss. However, buffer underrun is possible. Referring
to Figure 3.3, v6 exposes a critical situation. If v7 has finished sending all packets,

43

3 Efficient TDMA Schedules for Data-Gathering

Type I Type II Type III SPR

k-hop enhanced plain

Lower Bound for R % N � 1 N
�
h�� C

C�1

	
κ

Upper Bound for R N � 1 N � 1 1
2

�
N2 �N

�
C

C�1κN

Slot Storage O pCq O pCNq O pCq O pCκq

Lower Bound for T %
C pN�1qL NL

�
h�� C

C�1

	
NL

�
h�� C

C�1

	
NL

�
minph�, κq� C

C�1

	

Buffer Overflow 3 3 3 –

Buffer Underrun – 3 3 3

� Table 3.1: Analytical comparison of static slot assignment schemes

v6 will be left with two sending slots but only one active receiving slot. Up to that
point, v6 has forwarded as many packets as it has received, so that its buffer is at its
initial fill level. Hence, that slot can be effectively used. However, the balance between
incoming and outgoing packets is disturbed. If the buffer of v6 runs empty before the
second subtree has finished sending, one slot per round will be wasted. Compared to
Type III, propagation of this problem is slower and its impact less severe, if the slot
is reused somewhere else. Due to the own initial fill level, each node will suffer from
the disturbed balance with a certain delay. Nevertheless, in case of buffer underrun,
an information mechanism is required to prevent parents from idle listening.
Table 3.1 summarizes the main characteristics of the four slot assignment strategies.

As shown in Section 3.3.2, slot assignment using SPR can be done with low overhead.
It is comparable to that of enhanced Type II and Type III. In addition, the explicit slot
calculation described in Section 3.3.3 allows for a small memory footprint. However,
SPR schedules may be collision-afflicted, so that the choice of κ is an critical issue.
Comparing runtime estimations gives evidence, that SPR can achieve low runtime
even in large or dense networks. However, performance depends on the number of
leafs and the shape of the tree. Unbalanced trees may provoke buffer underruns, so
that some slots will be wasted. The actual effect of buffer underrun cannot be grasped
by analytical investigation. Therefore, it is impossible to decide at this point, if and
under which conditions SPR may outperform other scheduling types.

3.4 Considerations for a Simulative Comparison

The analytical investigation performed in Sections 3.2 and 3.3.5 helps to generally
understand the behavior, strengths and weaknesses of the different types of slot as-

44

3.4 Considerations for a Simulative Comparison

signment. However, estimations are rough and based on assumptions, such as equal
buffer fill levels, unlimited buffers, and the absence of packet loss. In a real sensor
network, they can be hardly justified, as particularly discussed in Section 2.1.1. Some
issues, such as energy-efficiency, cannot be forecasted, since they are, e.g., closely re-
lated to packet loss and unpredictable tree structure. Hence, simulation is the method
of choice in order to gain more realistic performance results. Additionally, it is re-
quired to verify and weight the influence of the findings in this chapter. Yet, before
developing a simulation framework as suggested in Section 3.1, metrics have to be
assessed and parameters must be identified.

3.4.1 Metrics

In a data-gathering application, energy-efficiency is one of the most critical character-
istics, since it determines the possible lifetime of a network. Although energy-efficiency
is affected by the overall energy consumption, this would imply to consider tree con-
struction, synchronization (for TDMA to work), slot assignment, and data collection.
While the first two issues are common to all different slot assignments, they do not
have to be considered when comparing slot assignments. The amount of energy re-
quired for assigning slots using Type I is beyond the amount needed by the other
types. This is true, because Type I relies on precise knowledge of communication or
interference neighborhoods in order to create schedules with few or no collisions (cf.
Section 2.3.2). Yet, slots are assigned only once at the beginning of each collection
phase. Assuming that traffic during actual data collection is in a higher magnitude
than slot assignment overhead, the latter can be justifiably neglected.

Still, energy-efficiency can be looked at from two different perspectives. Firstly, the
overall amount of energy consumed by all nodes in the network must be considered,
because it focuses on global efficiency, i.e., the amount of energy required for receiving
a portion of data. In contrast, individual energy consumption is relevant. Nodes close
to the sink are exposed to the highest load in the network, so that they will be the
first ones to run out of energy. Since they form the only connection points between
all other nodes and the sink, data collection will become impossible as soon as these
nodes have completely de-energized.

As discussed in Section 2.1.1, communication in wireless sensor networks is suspect
to interference. Even in the absence of packet loss due to communication errors,
reliability cannot be guaranteed. Since Type I and the new SPR slot assignment
strategy may both suffer from collision-afflicted schedules, the yield (or success rate)

45

3 Efficient TDMA Schedules for Data-Gathering

of a collection phase must be analyzed. It is defined as the average ratio of data
actually received by the sink as compared to the amount of data generated during a
sensing phase. In addition, the number of collisions and dead links is of significance
in this context. The latter can be described as a disturbed communication between
parent and child, which causes both nodes to eventually give up communication,
although the child has not completed forwarding all data stored in its subtree.

Besides yield, low runtime is eligible. In consequence to decreasing runtime, a higher
sensing or sampling frequency can be achieved or the accuracy of measurements can
be boosted. This may be particularly relevant in monitoring applications that profit
from a higher resolution of observations. Additionally, runtime may even be limited;
e.g., consider a tideland monitoring application, in which data collection is possible
exclusively during ebb tide.

Finally, communication overhead during data collection must be looked at. Its
sources are manifold. Enhanced Type II, e.g., directly produces overhead by sending
slots upwards in the tree, so that some other node on the same path can reuse them.
Collisions lead to overhead, because data packets and acknowledgments have to be
sent multiple times. In addition, buffer management and flow control, as described
in Section 2.2.3, impose additional traffic, even if their influence can be reduced by
piggybacking corresponding information.

3.4.2 Parameters

A thoughtful identification of relevant network parameters is indispensable for ob-
taining a meaningful and broad comparison of the presented slot assignments. The
analytical investigations in Sections 3.2 and 3.3.5 have already put forth a variety of
parameters that have to be considered.

In the first place, the number of nodes and network density are key characteristic
of a wireless sensor network. As shown in Section 3.2.2, they influence the overall
number of slots assigned. Both additionally affect the shape of the built routing tree.
The tree depth will increase with a growing number of nodes and decreasing density.
Increasing the density will additionally result in a higher tree degree. In this context,
the impact of limiting the maximum number of children per node should be studied.
It may affect tree depth and thus runtime, and may be necessary in dense networks
due to the restricted amount of memory available on wireless sensor nodes.

All estimations in this chapter have assumed, for simplicity reasons, equally dis-
tributed initial buffer fill levels. In a real network, this may not be justifiable. Firstly,

46

3.4 Considerations for a Simulative Comparison

some nodes may be required to produce more data during a sensing phase than others.
Secondly, if links have been interrupted in a prior collection phase, fluctuating buffer
fill levels at the beginning of the following collection phase(s) will result. Hence, the
influence of different buffer fill levels should be investigated.

In addition, particularly Type III is sensitive to the initial buffer fill levels, individ-
ual node load, and the maximum buffer size. This observation proposes two different
approaches on this matter: varying initial fill levels and also comparing limited with
unlimited buffers. Here, the combination of network size, density, and the resulting
tree structure may lead to additional conclusions.

47

3 Efficient TDMA Schedules for Data-Gathering

48

Chapter4
Simulation Framework

The analytical investigation in Chapter 3 has lead to a better understanding of exist-
ing TDMA schedules and the newly introduced SPR. However, further investigations
are required in order to validate those findings and render them more precisely. In
addition, open issues have to be inspected, e.g., the influence of network density,
packet loss, buffer size, and fill level. Such a task can be performed via simulation.
The ns-2 network simulator is a well-established tool for evaluating and analyzing
wireless sensor network applications. This chapter starts out with a detailed look
at the relevant parts of ns-2 (version 2.31) for building a data-gathering simulation.
An appropriate simulation framework is defined next, including the specification of
a TDMA-based protocol for data-collection. Finally, the implementation of this pro-
tocol will be discussed.

4.1 Introduction to ns-2

This section provides a brief look at the ns-2 stack. As the characteristics of the
MAC layer and its influence on interference have major impact on data-gathering
applications, a detailed description of their realization in ns-2 will be provided.

4.1.1 Protocol Stack

ns-2 employs a strictly layered stack, in which communication is generally possible
only between adjacent layers. They are implemented in C++ in order to achieve high
performance. Connecting these layers and configuring a simulation run is done using
an OTcl script for flexibility. Figure 4.1 illustrates a simplified diagram of those layers
with their interaction. Solid arrows indicate packet flow, dashed ones refer to access

49

4 Simulation Framework

during packet processing. In the following, the general packet flow will be explained.
Here, the terms incoming and outgoing will be used to distinguish between packets
received and sent by a node, respectively. Details about the physical and MAC layer
are found in the following sections.

Communication End Point (Agent)

Routing

Link Layer

Queue

Medium Access Control (MAC)

Physical Layer

Channel

Address Resolution (ARP)

Propagation Model

Modulation Scheme

� Figure 4.1: ns-2 layer model

An application packet is generated by the communication end points, called agents
in ns-2. It is passed down the stack to the routing layer, which is mainly responsible
for addressing, e.g., determining the next hop in multi-hop communication. Logical-
to-physical address resolution is done at the link layer, before outgoing packets are
sent to the queue. By default, the latter uses a blocking mechanism. Being initially
unblocked, the queue changes to a blocked state, after having sent a packet to the
MAC. In this state, further packets are buffered, until the MAC eventually unblocks
the queue on completed packet delivery to the physical layer. At the physical layer, the
packet is stamped with information, such as sending power, and sent to the channel,
which is common to all nodes. On packet reception, the channel distributes a copy
of the packet to each potential receiver. Packets are delivered with individual radio
propagation delays, which are calculated by taking the ratio of distance to the sender
and the speed of light.
On reception of an incoming packet from the channel, the physical layer determines,

if the packet could actually be received by the radio hardware. This is required, be-
cause the channel does not consider the receiving power during packet distribution. If
a modulation scheme is configured, the physical layer simulates bit errors for received

50

4.1 Introduction to ns-2

packets, which are finally sent up through the MAC. Incoming packets do not pass
the queue, they are directly delivered to the link layer. The routing layer has to check
whether the packet has to be forwarded (routed). If this is the case, it looks up the
next (intermediate) receiver in its routing table and writes this information into the
packet, before sending it down the stack again. If the packet was intended for the
local node, it is sent up to the appropriate agent(s).

4.1.2 Wireless Physical Layer and Channel

On reception of an incoming packet from the channel, the physical layer obtains its
signal strength using the specified propagation model. Three models are currently
available in ns-2: free space, two-ray ground, and shadowing. In general, they behave
like the pathloss model described in Section 2.1.3, but additionally make use of the ra-
dio frequency and antenna characteristics. An easy way to include their influence into
the presented model is to adjust the sending power P T

i of the sender vi correspond-
ingly. The free space model is based on α�2; the two-ray ground model uses α�4,
but behaves like the free space model at low distances. The shadowing model allows
for customization of α. In addition, it adds to the signal power a random variation
that is drawn from a normal distribution with zero mean and configurable standard
deviation. Concrete formulas for all models can be found in the ns-2 manual [FV08].

Having determined the receiving power, the physical layer compares it with two
thresholds. The first one is the carrier-sense threshold θcs, which is the sensitivity of
the radio transceiver. Packets with a signal below that threshold cannot be received
by a real radio transceiver and are thus discarded by the physical layer of ns-2. This
procedure is necessary, because the ns-2 wireless channel distributes packets to all
nodes within a given radius of the sender. This delivery radius is the distance at
which the signal power has decayed to θcs plus a safety margin of 5m. The wireless
channel calculates it once on first packet reception, using the transmission power of the
sending node. Hence, using individual transmission powers may lead to undesirable
results. Additionally note that if the shadowing model is used, packets are distributed
to all nodes in the network, because radius calculation is not possible due to the signal
randomization.

The second threshold is the receive threshold θrx. A radio transceiver uses it to
decide when to start a reception. Its meaning is to keep the bit error rate below a
desired limit (cf. Equations 2.3 and 2.4). In ns-2, packets with signal power of at least
θrx are sent to the MAC. The physical layer can be configured to apply a statistical

51

4 Simulation Framework

bit error model to those packets. Calculation of bit error probability is achieved via
configuring a modulation scheme. The physical layer uses this probability in order
to decide whether marking a packet as erroneous or not. A packet with signal power
equal to or above θcs and below θrx is always marked erroneous, but sent up to the
MAC. This is required, since the MAC, e.g., may have to perform collision avoidance.
If the physical layer has sent a packet to the MAC, it gives up control about it. This
is a design limitation of ns-2 and implies that collision detection cannot be done by
the physical layer and must be also accounted for by the MAC.

As stated before, the carrier-sense and receive threshold are characteristics of the
radio chip. Changing the communication range is done by adjusting the transmission
power. In ns-2, however, it is required to set a fixed transmission power and change
θcs and θrx, since the channel assumes a common transmission power when setting up
the packet delivery radius. Configuring the thresholds must be done appropriately.
In general, θrx is simply set to guarantee the desired communication range. Bit error
probability, if desired, is separately configured via the modulation scheme. The setup
of θcs is more difficult. On the one hand, it must be chosen low enough to ensure that
all packets that may cause interference are sent up to the MAC layer. This depends
on the chosen interference model. On the other hand, it should be high enough to
prevent the channel from futile packet distribution, since this increases running time
of a simulation.

4.1.3 MAC Layer

In the first place, the MAC layer is required to implement protocol specific function-
ality, e.g., CSMA or TDMA behavior. Besides, the MAC must perform basic tasks,
such as simulating packet transmission time and packet collision. A common approach
on this matter is as follows. Before the MAC sends a packet to the physical layer,
it calculates the transmission time by means of the packet length and the channel
bandwidth, which is a MAC parameter in ns-2. It then stamps the packet with that
information. If the MAC receives an incoming packet from the physical interface, it
delays delivering the packet to the link layer by the attached transmission time. In
case the MAC receives a new packet from the channel during it is already receiving
another packet, it must check for a collision. If the later packet does not cause a col-
lision, this is called capturing . In ns-2, a packet is simply dropped in this situation. If
it causes interference, the MAC keeps the packet that will be longer on the channel
and drops the other one. However, the kept packet is marked as erroneous. In conse-

52

4.1 Introduction to ns-2

quence, only the first detected packet of an overlap can be received successfully. This
model is used, e.g., in the IEEE 802.11 W-LAN implementation for ns-2 [Liu] and is
explained in [WWJ�05]. A valuable outcome is that it suffices to chose θcs � θrx{θint
for collision detection at the MAC layer. In ns-2, the interference threshold θint is
called capture threshold.

Of course, this model is not as precise as the SINR from Equation 2.3, because it
does not accumulate radio signal powers. Yet, using the SINR would require the MAC
of each node to keep track of the transmission times and receiving powers of all packets
on the channel. Even with moderate simplifications, such as neglecting packets, if their
receiving power is below θcs, this would have two implications. Firstly, implementation
of the MAC protocol would become complexer, particularly due to mixing MAC
functionality with the simulation of physical effects. Secondly, simulation runtime
would be increased. In addition, it is questionable, if implementing this complex
structure would lead to a higher simulation accuracy, as propagation models are
already imprecise. Andel and Yasinac show that improving the preciseness of a single
component of a simulator does not necessarily increase simulation accuracy [AY06].

h
P

R
i,j

i
dBm

= −2.7 · 10 log10

„
di,j

m

«
dBm

θrx

θcs

θint=̂10 dBm

reception

erroneous reception

no reception

di,j [m]

P
R i
,j

[d
B
m
]

0 10 20 30 40 50 60 70 80

0

−10

−20

−30

−40

−50

−60

� Figure 4.2: Example receiving power and radio thresholds

Figure 4.2 depicts the receiving power in relation to node distance using the
pathloss model from Section 2.1.3 with α � 2.7, d0 � 1m, and P T

i �1mW �̂ 0 dBm.
In order to guarantee a communication range of 30m, it follows that θrx �̂ � 40 dBm
is required. Here, the MAC implements the threshold-based interference model with
θint �̂ 10 dBm (cf. Equation 2.2). This leads to θcs �̂ � 50 dBm, which results in a
delivery radius of Rint � 71� 5m.

53

4 Simulation Framework

4.2 Simulating Data-Gathering in ns-2

As outlined in Section 3.4, the influence of different TDMA schedules on a two-phase
data-gathering application shall be compared via simulation. For this purpose, an
analysis is performed in order to derive and specify a simulation framework.

4.2.1 Analysis

As stated in Section 3.1, the main focus of this thesis is on the influence of the
scheduling schemes on data-gathering. Therefore, it is sufficient to restrict each sim-
ulation run to a single collection phase. However, it is not required to simulate all
parts of such a phase (cf. Section 2.2) using ns-2. Tree construction and the actual
slot-assignment algorithms are not to be investigated. Sourcing them out has con-
siderable advantages. Settings have to be generated only once and can be used for
different simulation runs. This saves simulation time and leads to comparability of
the results, because it allows to vary one single parameter at a time. Additionally,
the implementation for ns-2 is simplified, as only the collection protocol using TDMA
has to be considered here.

Splitting the collection phase as proposed above implies that a simulation frame-
work should be founded on three pillars: the simulation settings, the data-collection
protocol running on each node, and a simulation script connecting them. Figure 4.3
depicts the general setup of such a simulation framework. Before discussing these
components in detail, a general analysis is performed.

Setting Simulation

Node

position

create packets

set parent and children

assign slots

Application

Routing

Bu�er

MAC

dat

dat

dat

dat

Topology

Tree

Bu�er Fill Level

Slot Assignment

� Figure 4.3: Simulation architecture

54

4.2 Simulating Data-Gathering in ns-2

Simulation settings describe the network and the configuration of each node re-
quired to perform data-gathering using TDMA as introduced in Section 2.2.1. Hence,
a setting can be divided into four distinct parts: the topology, giving information
about node positions, the routing tree, the initial buffer fill levels, and the slot as-
signment.

As settings are precalculated and thus usable in various simulation runs, a suitable
simulation script is needed to load a specified setting to setup a single run. Nodes are
created and positioned as defined by the topology. The application of each node is
prompted to generate the appointed initial buffer fill level. The routing component is
set up according to the tree, and slots are assigned as created by the slot assignment
algorithm. This configuration process is also illustrated in Figure 4.3. Besides, it
includes setting up diverse ns-2 parameters and the layered stack with the modules
presented in this chapter. In addition, the ns-2 link layer must be exchanged. It
provides an address resolution protocol (ARP), which is unnecessary in a wireless
sensor network. Nodes have unique identifiers that are used as their address, so that
the ARP protocol creates undesired packets. Hence, it is sufficient to replace the
default link layer with a simple implementation that only passes received packets up
and down the stack, respectively. If the simulation is set up, the script initiates the
actual simulation via ns-2. After completion, the script generates and stores detailed
simulation results for subsequent evaluation. Here, it is useful to generate as much
data as possible and leave evaluation to a dedicated tool, because this guarantees
flexibility. Specifically, metrics can be easily adjusted or added.

The actual data-collection protocol that runs during a simulation employs a
TDMA-driven MAC, as this reduces energy-consumption according to the results
of Sections 2.2.4 and 2.3.1. Furthermore, it has to fulfill the requirements discussed
in Section 2.2.1. Each node forwards data into the direction of the sink; this includes
data generated by the node’s application layer and incoming data from remote nodes.
If a node has forwarded all data, it sleeps for the remainder of the collection phase.
As recommended in Section 2.2.2, a data-gathering tree ought to be used for routing.
To achieve reliability, each node must store incoming packets from its children in
its buffer and send an acknowledgment, signaling if the packet could be stored. In
addition, a node must not remove a packet from its buffer, before the corresponding
acknowledgment is received. Figure 4.4(a) illustrates the flow of a data packet on an
example two-hop way from the source to the sink. In general, sending a data packet
and the corresponding acknowledgment in the same slot increases efficiency. This has
several reasons. Firstly, the role of each node is a-priori known: A child sends data in

55

4 Simulation Framework

its slots and a parent listens in the slots of its children. Secondly, data packets and
acknowledgments are of different size, so that sending them in different slots leaves a
part of a slot unused for acknowledgments, which increases overall runtime. Thirdly, a
child gains fast feedback about packet reception. As explained in Section 2.2.3, buffer
overflows have to be prevented for maintaining energy-efficiency. For this purpose, an
inornate but effective solution is to supply acknowledgments with a counter ωc that
demands the corresponding child to skip ωc slots. Its value depends on the current
buffer fill level L̃.

Source Parent|Child Sink

Application

Routing

Link layer

Buffer

MAC

Physical layer

Channel

(a) data packet flow

Child Parent

(b) acknowledgment flow

� Figure 4.4: Flow of data packets and acknowledgments

Since different types of schedules will be investigated, the MAC layer has to offer
a general slot storage mechanism. Energy-efficiency requires that a node knows for
each slot, if the latter can be used for sending, is assigned to a child and thus reserved
for receiving from that child, or if sleeping is possible (cf. Section 2.2.1). As a result,
the slot storage mechanism must provide every node with its sending slots and the
receiving slots of its children. From this information, a node can derive the slots,
in which it may sleep. In addition, slot storage is required to include the mapping
between receiving slots of a node and the corresponding child. This mapping enables
a node to identify link failures, which is mandatory to prevent idle listening in the
corresponding slots, as described in Section 2.2.1.
A reasonable strategy for detecting interrupted links is to give up receiving, if no

packet is received in a certain number of consecutive slots belonging to the same link.
This mechanism exhibits a problem in the case of a buffer underrun. If there is no
packet to send, while at least one child still has to forward data, the node’s parent
must be detained from mistakenly considering the link as interrupted. Sending a

56

4.2 Simulating Data-Gathering in ns-2

keepalive packet each time this situation occurs is a poor decision, as it is not energy-
efficient. This is particularly severe, if the affected node has further sending slots
at its disposal, before expecting the reception of a new packet. Note that keepalive
packets have to be acknowledged, since the detection of interrupted links is a two-
way mechanism. To reduce the number of keepalive packets, a node must predict
the number ωp of potentially unusable sending slots once a buffer underrun occurs.
ωp is attached to a packet sent to the parent and advises the latter to skip ωp slots.
Note that this procedure works similar, but in opposite direction, to the flow control
explained above.

In general, the four components of the protocol, as depicted in Figure 4.3, can be
directly mapped to the ns-2 stack (cf. Section 4.1.1). However, the just described
functionalities have to be assigned to these layers under consideration of the ns-2
stack. Firstly, the routing layer has to send acknowledgments, because the MAC
cannot access the buffer. Hence, it does neither know, if an incoming packet can be
stored, nor is it capable of calculating ωc. Secondly, these acknowledgments must not
be stored in the buffer, but are required to be immediately sent down to the MAC.
This is needed in order to allow the sending of a data packet and the corresponding
acknowledgment in the same slot. Thirdly, on the reception of an acknowledgment, it
must travel all the way from the MAC up to the routing layer and down to the buffer,
because a packet cannot be removed from the buffer except by the buffer—the ns-2
queue—itself. Figure 4.4(b) shows the corresponding flow of a single acknowledgment
from the parent to a child. Fourthly, only the MAC layer has knowledge about a
node’s number of slots and the ones of its children. Hence, calculating ωp is to be
done at this layer. It is also responsible for sending keepalive packets due to the same
reason.

4.2.2 Simulation Settings

A simulation setting consists of a topology, a routing tree, initial buffer fill levels,
and the actual slot assignment. For each topology, there may be several trees and
different initial fill levels. Slot assignment is performed as the last step. E.g., load
aware Type III requires a tree and the fill levels for generating an assignment. A set
of tools, developed in Perl, exists to create the required simulation settings. Their
main characteristics will be introduced in the following. A detailed overview about
all available tools is provided in Appendix B, and the implementational effort can be
obtained from Table 4.2.

57

4 Simulation Framework

As discussed in Section 3.4.2, the number of nodes N and the density % are the
two key parameters of a topology. Hence, a topology generator is designed to comply
with these needs. It creates a random topology from a specified number of nodes
and a given density. At first, nodes are aligned in a scaled grid meeting the specified
density and are then randomly distracted. The random distribution used for this is
configurable. As the estimations made in Chapter 3 are based on minimum-depth
trees, an additional topology generator exists. It is intended for creating appropriate
topologies to validate these estimations.

Tree construction is performed by a breadth-first search in conformance with Sec-
tion 2.2.2. Among all nodes vi already added to the tree, the one with lowest depth hi
and less than C children is selected that has the closest neighbor vj not yet connected
to the tree. vj is then added as a child of vi. Note that C is a parameter here. Of
course, this approach cannot be implemented easily in a real wireless sensor network,
because distances are usually not available. Yet, application of this strategy is suit-
able for simulation, because receiving power is a frequent metric for link-quality and
is calculated from the distance between sender and receiver in ns-2 (cf. Section 2.1.3).
Note that the underlying algorithm permits the construction of ideal routing trees
for C � 8. Therefore, comparison under perfect conditions is possible, so that any
side-effects that may influence a particular scheduling scheme are prevented. Further-
more, the sensibility of the schemes to C can be analyzed.

Another outcome of Section 3.4.2 is to investigate the influence of different initial
buffer fill levels. Hence, the appropriate script supports the generation of both evenly
and randomly distributed fill levels among nodes.

Slot assignment has been implemented as suggested in Sections 2.3.2 and 3.3.1. For
Type I, the CCH algorithm is used, as it has been shown to produce few slots (cf. Sec-
tion 2.3.2 on page 21). However, two variants of CCH are considered, as simulation
results have revealed that the simple 3-hop approach generates schedules suffering
heavily from collisions. Hence, an alternative has been conceived that takes the in-
terference factor γ as a parameter. It derives 2-hop interference neighborhoods from
the topology and is thus capable of producing collision-free schedules. To distinguish
between these two variants, the interference-based approach is called CCH γ.

The organization of the settings reflects the dependencies of the different parts.
A topology is required to build a routing tree. Slot assignments depend on all
other three parts. The logical order is thus given as: topology, tree, buffer fill lev-
els, slot assignment. Hence, it is beneficial to store settings in a subfolder struc-
ture containing the parameters used during construction, particularly the number

58

4.2 Simulating Data-Gathering in ns-2

of the nodes N , the maximum number of children C, the buffer size B, mini-
mum and maximum initial fill levels, and the type of slot assignment. The den-
sity is not included in the path, but is implicitly encoded by the simulated area
size (length and width). An additional counter is used to allow the generation
of multiple topologies with the same parameters. An example for such a path
would be ./area_1000x1000/nodes_0100/count_007/tree_8/buffer_200_25_75/-
slots_1_cch. The individual setting files are placed inside the corresponding sub-
folder, e.g., a tree file is stored in ./area_1000x1000/nodes_0100/count_007/tree_8.
This structure permits a simple grouping and individual access strategy that is needed
to support many simulation runs.

4.2.3 Simulation Environment

The logical structure of the simulation environment is shown in Figure 4.5. Simulation
settings are placed in the folder settings using subfolders as explained in Section 4.2.2.
Default OTcl configuration files for ns-2 are placed in the config folder. Specific sim-
ulation setups are located below experiments. Here, different simulation runs can be
organized in a tree structure, where each subfolder may contain a more specific OTcl
configuration file. A list of parameters is provided in Appendix A.

dat results

sim

data experiments

settings con�g

dat dat dat
. . .

tcl tcl . . .

tcl tcl
. . .

Simulation

� Figure 4.5: Structure of the simulation environment

A simulation run is started by navigating to the corresponding folder below exper-
iments and starting the simulation script Simulation.tcl via the ns-2 interpreter. It
is configured with environment variables that are explained in Appendix A.1.1. At
first, the script invokes a dedicated OTcl-library that is responsible for loading the

59

4 Simulation Framework

desired simulation setting from the settings folder. Next, a default configuration file
and one for the used radio chip are read from the config folder. This is followed by
reading the individual configuration files from the experiments folder down to the
folder from which the script has been invoked, assuring that more specific parameters
have higher precedence. Configuration options are listed in Appendix A.1.2. The ns-2
simulation is then prepared by setting up the stack with the appropriate modules.
Besides initializing the radio and physical interface, the settings have to be applied
as described in Section 4.2.1 on page 55.

When the setup is complete, the simulation is started by the script. The latter
checks periodically, if all nodes have entered the final sleeping state. For this, the
MAC is required to provide an OTcl command. If all nodes but the sink have entered
this state, the script stores the simulation results in the current folder. The naming
and layout of those evaluation files is described in Appendix A. Finally, the Perl script
getValues.pl has to be manually invoked to extract data according to the metrics
described in Section 3.4.1. Table 4.2 gives an overview about implementational effort
of the individual modules used by the simulation script.

A configurable startup script startSimulation.pl has been conceived to easily run
many simulations. Provided with the parameters encoded in the settings path as a
filter, the startup script parses the subtree of settings and starts a simulation for each
matching path by calling the simulation script with appropriate environment variables
(cf. Appendix A.1.1). E.g., it is possible to run a particular simulation for all different
network sizes and trees with a given density (encoded by the area), buffer fill level,
and scheduling scheme. A corresponding filter could, e.g., be ./area_1000x1000/-
nodes_�/count_�/tree_�/buffer_200_25_75/slots_1_cch. This is schematically il-
lustrated in Figure 4.5. For clarity, the subtree structures of experiments and settings
are displayed as gray shapes with dashed borders. The flow of data is indicated by
dashed arrows, and the individual simulation runs are symbolized by the gray shape
with the gears attached. Two simulations are initiated by the startup script run from
a subfolder of experiments. For each matching simulation setting, the default config-
uration files and local ones are read. Then, the simulation is performed and results
are stored in the folder from which the startup scrip is invoked.

4.2.4 Data-Collection Protocol

The analysis at the beginning of this section underlines the advantages of sending a
data packet and the corresponding acknowledgment in one slot. The layout of such a

60

4.2 Simulating Data-Gathering in ns-2

slot is depicted in Figure 4.6. At the beginning of a child’s sending slot, the child and
its parent switch on their transceiver. However, the child does not immediately start
transmission. In a real network, a guard interval is used, because clocks cannot be
assumed to be precisely synchronized. Between sending and receiving, propagation
delay is observed. As the acknowledgment is sent in the same slot, child and parent
must turn their transceiver from the current mode to reception or transmission mode,
respectively. Finally, both nodes sleep for the rest of the slot to save as much energy
as possible. Another method applied to preserve energy is as follows. A node aborts
listening in a slot, if packet reception does not commence in a given time.

child

parent

time slot

sending data receiving ack

receiving data sending ack

guard interval
tx/rx turnaround

sleeping

tx/rx turnaround sleepingpropagation delay

propagation delay

idle blocked active

� Figure 4.6: TDMA slot layout

To detect interrupted links, a data packet is resent at most r times, if the pertinent
acknowledgment is not heard. After having missed r�1 consecutive acknowledgments,
the node considers the link to its parent to be interrupted and gives up sending.
Likewise, the MAC assumes a link to a child to be interrupted, if no packet has been
received for r� 1 of its slots. The choice of r has to satisfy two requirements. On the
one hand, it must be chosen large enough to assure a high packet delivery rate, avoid
a partitioned tree, and therefore minimize latency. On the other hand, it must be
chosen small enough to allow timely detection of interrupted links and thus preserve
energy-efficiency.

The packets sent during a slot carry important protocol information. Acknowledg-
ments must include a success flag that indicates whether the packet could be stored

61

4 Simulation Framework

in the buffer. The last-packet flag is used to indicate that a node has sent the last
packet, i.e., the current packet is the last one in the buffer and no more incoming
packets are expected. In case the MAC receives the last packet from one of its chil-
dren, it shuts down that link with a delay of r slots. This is required to keep that
child from resending its last packet up to r times, if the first acknowledgment is lost.
On reception of a packet from a child, the corresponding acknowledgment is equipped
with the flow control counter ωc. The value of ωc is calculated as the difference be-
tween the current buffer fill level and the soft limit B̃. In case ωc is negative, it is
adjusted to zero. In extension to this, an abort flag is set, if ωc ¡ 0 and if the link
to the father is interrupted. This abort flag instructs the corresponding child to stop
forwarding packets, since the parent’s buffer is full. Packets are stored in the buffer,
until their successful transmission to the parent has been acknowledged.

This way of flow control interferes with the detection of interrupted links, as a
node may mistakenly declare a link interrupted. The remedy is to store for each child
the value of ωc attached to the last acknowledgment. However, this does not imply
that a node does not have to listen in the following ωc slots of that child. The reason
for this is that the acknowledgment could actually be lost, so that the child would
not know about ωc. It would keep sending to its parent, but would not receive an
acknowledgment. Hence, it might accidentally consider the link to be interrupted. As
discussed during the analysis on page 56, buffer underruns require special handling
due to the same reason. A parent must be informed about this situation using ωp,
so that the node suffering from underrun can skip slots. For this purpose, the MAC
layer calculates ωp as the difference between the number of the node’s sending slots
and receiving slots of its active children. Here, the term active implies that the link
to the child is not interrupt, that the child has not sent its last packet, and that it
is currently not skipping any slots. If ωp is positive, it is included into a packet to
the parent. Due to the same reasons as in the preceding paragraph, a node is not
allowed to skip the just calculated number of sending slots, unless its parent has
agreed. The latter can simply do so by attaching a received ωp to the corresponding
acknowledgment. To prevent conflicts between ωc and ωp, the larger one is used.

4.2.5 Extensions for Dynamic Slot Reuse

The just presented protocol has to be extended in order to meet the requirements for
reusing slots as needed by the enhanced Type II TDMA schedule. In particular, the
MAC layer must provide the reception and forwarding of slots that can be reused.

62

4.2 Simulating Data-Gathering in ns-2

Furthermore, a reuse strategy is required. It is designed based on the description
in Section 2.3.2 on page 23. If a parent node has received the last packet from a
child, or if the corresponding link is interrupted, the parent may claim the slots of
that child. However, it may not reuse all of these claimed slots, but must forward a
specified fraction of them. The same strategy is also applied, if a node receives slots
from one of its children. In case a node wants to use new slots for sending, it must
inform its parent, so that the latter will listen in those slots. Therefore, a node must
not actually use new sending slots, before its parent has acknowledged. As a result,
two distinct sets of slots can be attached to a packet: the set that a node wants to
use itself and the one it forwards. Both of those sets can be sent piggybacked or in
standalone packets, e.g., if no more data packets have to be sent or as a replacement
for a keepalive packet.

Slots must not be used by more than one node at the same time, as this will
potentially lead to collisions. This problem could be solved, if every node kept track
of each slot it has received in a collection phase. Due to the restricted amount of
memory available on a sensor node, this is not feasible. Hence, a different approach
has to be chosen. First of all, packet loss must be coped with. If a node has received
a set of slots from a child, but the acknowledgment is lost, the sender will resend
the packet along with the attached slots. On the newly reception of the same set of
slots, the receiver may come to a completely different decision about which of those
slots to use itself and which of them to forward. In particular, this will occur, if the
same node has received another set of slots meanwhile. The solution is to identify
duplicates via the MAC sequence numbers. This implies that the sender may not
alter the set of slots attached to a resent packet, because this could lead to the
loss of slots. If a parent node has received the last packet of one of its children,
the corresponding slots must not be used before another r slots (of that child) have
elapsed. Immediately reusing slots may lead to collisions, as the child will resend its
last packet, if the acknowledgment was lost.

S =
˘

16, 17, 18, 32, 36, 320, 321, 322, 323, 324
¯

16 1 2 13 1 3 1 283 1 4

1 x 16 1 i 2 1 x 13 1 x 3 2 x 283 1 i 4

� Figure 4.7: Example run-length coding of a set of slots for Type II

63

4 Simulation Framework

Bytes required for encoding subsets S 1 of size
3 5 7 10 15 20 50

No Coding, 16 bits per slot 6.0 10.0 14.0 20.0 30.0 40.0 100.0
RLC Coding, |S| � 200 4.5 6.4 8.2 11.0 15.8 20.7 47.9
RLC Coding, |S| � 100 4.0 5.9 7.9 10.8 15.6 20.2 39.0
RLC Coding, |S| � 50 3.9 5.9 7.8 10.6 14.7 18.1 2.9
RLC Coding, |S| � 10 3.8 5.2 5.6 2.9 — — —

� Table 4.1: Average byte usage for random subsets S 1 � S � t0, . . . , 999u

Sending a set of slots must be done efficiently. An advanced run-length coding
(RLC) scheme has been designed to meet this end. The first slot is used as an offset.
Coherent subsets and gaps including the first slot behind the gap are coded as follows.
The first bit of a block indicates the length of the block, which may be 1 or 2 bytes. The
next bit determines, if the block encodes a consecutive subset of slots (i �̂ inclusive)
or a gap (x �̂ exclusive). The remaining bits are used to encode the size of the subset
or gap, respectively. This scheme is capable of coding up to 214 slots. Making use of
the implicit coding of the first slot after a gap has two benefits. Firstly, single slots are
already coded by the corresponding gap. In addition, the size of a subset is decreased
by one, which may save memory.

An example slot coding is shown in Figure 4.7. The first slot (or the initial gap
of 16 slots) is coded as the offset. Since 16 is encodable with 6 bits, the block has
size 1. Note that the first block always codes a gap (even if it is empty). The first
subset has size 3, but only 2 slots have to be coded, as slot 16 is implicitly included
in the prior block. It follows a gap of 13 slots. This gap, including the next slot 32
is coded in the third block. Coding of the fourth block is accordingly. The next gap
has size 283, so that 6 bits do not suffice. Hence, the block size must be 2. The final
block represents the last four slots, as the first slot of that subset has been coded in
combination with the gap. The actual implementation makes use of a parameter that
limits the available number of bytes, so that possibly only a subset can be coded.

The presented coding scheme is easy to implement and gives a compact repre-
sentation. Table 4.1 compares the average number of bytes required for coding sub-
sets S 1 of different sizes. The S 1 have been drawn independently from random sets
S � t0, . . . , 999u, and each combination has been simulated 10000 times. It shows
that savings are considerable even for large S and small S 1, i.e., few, rather not being
consecutive, slots with a large range are encoded.

64

4.3 Implementation of the Framework

4.3 Implementation of the Framework

In the following, the implementation of the data-collection protocol explained in Sec-
tion 4.2.4 will be sketched. In general, inter-layer communication in ns-2 is done by
adding appropriate information to packet headers. Yet, this method is not very effi-
cient and partly unsuitable for the protocol to be implemented, so that modification
of the ns-2 core and the layered stack is required at some points. As a result, cross-
layer interaction will be particularly focused in this section. The implementation of
the protocol is designed to be highly configurable. An annotated list of all parameters
can be found in Appendix A.1.3. Table 4.2 shows the implementational effort in lines
of code for each of the layers.

4.3.1 Application Layer

The application layer is encapsulated by the class TreeAppAgent. It offers the
method createPackets that takes the number of packets to create as an argu-
ment. Packets are immediately created and sent down the stack. Their payload size
can be configured via OTcl, and the last-packet flag is set in the last packet. As ap-
plication and routing can only communicate via the exchange of packets, this is the
easiest way to inform the routing layer about the last local packet. The OTcl com-
mand send-and-sleep is provided by TreeAppAgent in order to make packet
generation possible by the simulation script. The method recv accepts packets from
the routing layer. TreeAppAgent provides two counters, one for the number of
packets created and one for the number of packets collected. Figure 4.4(a) sketches
the flow of data packets from a source node to the sink. Here, the shown intermediate
node acts as the parent of the source and as the child of the sink.

4.3.2 Routing

Routing is split into two parts. The abstract base class TreeRouting defines
a common routing interface and takes care of providing OTcl commands that
are called by ns-2 during stack setup. StaticTreeRouting is derived from
TreeRouting and contains all functionality as specified in Section 4.2.4. Adding
a new routing agent requires changes in the ns-2 core. Stack setup must be al-
tered in order to accept the new routing component and perform the needed ini-
tializations. Listing 4.1 shows how this task can be wrapped by a method that
creates a new instance of StaticTreeRouting (it is bound to the OTcl class

65

4 Simulation Framework

Agent/TreeRouting/Static following ns-2 naming conventions), configures it
with the node’s address, and finally attaches the routing module to the node. An
additional change is required in order to make ns-2 call this method, when checking
which routing agent has been chosen.

Simulator instproc create-statictreerouting-agent { node } {
set addr [$node node-addr]
set ragent [new Agent/TreeRouting/Static]
$ragent addr $addr
$node set ragent_ $ragent
return $ragent

}

� Listing 4.1: Integration of a new routing module into ns-2

StaticTreeRouting uses a STL vector for duplicate identification. Entries con-
sist of the source (not the last sender) of a data packet and its sequence number. The
length of the vector can be configured via OTcl. Setting up the routing table is done
with the OTcl commands set-father and append-child. The routing table has
been implemented in a dedicated class TreeRTable. It provides methods to set
and get the parent and the children. In addition, it keeps track of the state of the
parent and the children. This information is required by the routing layer in order
to decide when a node sends its last packet, as the last packet has to be marked
by setting the last-packet flag. In addition, the routing must set the abort flag in
an acknowledgment, if its buffer is full and its parent is not active, i.e., the link is
interrupted.
StaticTreeRouting has to handle three different packet types: incoming and

outgoing data packets as well as incoming acknowledgments. When outgoing packets
are received from the application, the last-packet flag must be inspected. If it is
set, the routing layer stores this information and clears the flag, unless it does not
have any active children. In addition, the routing takes care of addressing the packet
correctly and setting up a sequence number for duplicate identification at the routing
layer. Finally, the packet is sent to the buffer. On reception of an incoming data
packet, the routing must store it in the buffer, if it is not a duplicate, and issue an
acknowledgment. In order to generate the latter, the routing layer needs to know the
state of the buffer. Flow control demands for knowledge about its fill level and size,
setting the success flag implies to know whether the newly received packet can be
stored. Yet, as depicted in Figure 4.1, the link layer is blocking the way, so that there

66

4.3 Implementation of the Framework

is no direct connection between routing and the buffer. Hence, the ns-2 core must
be modified to connect routing and buffer. However, this connection is only used
to obtain the required information from the buffer. Storing packets and removing
them is done by sending packets and received acknowledgments down the stack. This
approach has been chosen in order to change the behavior of ns-2 as little as possible.

4.3.3 Buffer

A new buffer has been conceived in order to reflect the requirements from Sec-
tion 4.2.4. The class TreeRoutingQueue realizes a buffer that may have an unlim-
ited size and a soft limit for flow control. In addition, its interface suffices the needs
of the just presented routing layer by providing the methods isLimitObeyed and
softLimit. The corresponding variables have to be configured via OTcl. The ns-2
base class Queue additionally supplies the method limit. An important difference
to the default behavior of this class is, that a packet is not removed from the buffer,
when it is sent down to the MAC. This is necessary, for the routing layer requires the
precise buffer size, as explained above. Hence, acknowledgments received from the
parent must be passed from the routing layer to the buffer. The overall packet flow of
an acknowledgment is shown in Figure 4.4(b). In order to be compatible to an arbi-
trary MAC, which was particularly helpful during testing, outgoing acknowledgments
are treated as regular packets and are stored in the buffer. Yet, this is not desired in
the real protocol, as receiving a data packet and sending the according acknowledg-
ment has to be performed in the same slot. The class TreeRoutingPrioQueue,
which is built on top of TreeRoutingQueue, introduces this feature. Outgoing
acknowledgments are directly sent down to the MAC.

4.3.4 MAC Layer

The MAC layer has been split into several classes for the separation of general TDMA
behavior, protocol implementation, and slot storage. Those issues will be discussed
in the following.

Implementing a slot layout as described in Section 4.2.4 requires taking the findings
from Sections 4.1.2 and 4.1.3 into consideration. Propagation delay is performed by
the channel, but simulating packet reception and transmission must be done at the
MAC along with collision detection. Hence, a detailed modeling of the MAC layer is
required. This can be achieved by designing two state machines, one for sending and

67

4 Simulation Framework

one for receiving. Unused slots do not require further explanation, because a node
simply sleeps until the next alloted slot.

Figure 4.8 displays the abstraction of a sending slot. It generally reflects the child’s
view in Figure 4.6. Transitions are labeled with events, important actions are em-
braced by brackets. Incoming packets are dropped, until the node has started waiting
for the acknowledgment. This behavior is chosen, as the transceiver is assumed not to
be capable of receiving a packet while sending. When receiving an acknowledgment,
collision handling as described in Section 4.1.3 must be performed. Besides this, three
transitions are of special importance. Firstly, if a node does not have a packet to send,
it goes directly to the sleeping state. Secondly, waiting for an acknowledgment is given
up after a timeout. Thirdly, if a single packet has been received, it must either be
processed or discarded, depending on whether reception was successful.

The counterpart of the sending slot is illustrated in Figure 4.9. A parent initially
waits for packet reception. If reception does not start within a given period, the parent
goes to the sleep state. Note that this receive timeout must be chosen larger than that
in the sending state machine due to the guard interval. While receiving a packet from
a child, a parent node must perform collision handling. If reception has finished and
no collision has taken place, the node must check if reception was successful, i.e., the
packet has not been marked erroneous by the physical layer. This inspection must not
be done earlier, as discussed in Section 4.1.2. If the packet has been received without
errors, the transceiver is turned over to the sending mode. While transmitting the
acknowledgment, all incoming packets are ignored again. Finally, the parent sleeps
for the remainder of the slot and switches off its transceiver.

The just explained behavior is related to the protocol in Section 4.2.4 only in
parts. Hence, the abstract base class TreeTDMA has been designed to encapsulate
this basic TDMA behavior. It provides two interfaces, as shown in Figure 4.10. On the
one hand, callback methods are defined. They must be overwritten by an inheriting
class and include, e.g., signaling a new slot, completed transmission and reception.
On the other hand, actions, such as transmission, determining failed receptions, and
entering the sleep mode, are defined in the functionality interface and are provided
by TreeTDMA. Hence, interaction between a derived class and TreeTDMA is to react
on callbacks by invoking the required method. Here, TreeTDMA only initiates a new
sending or receiving slot and handles incoming packets along with collision detection.
All other steps have to be initiated by a derived class. In this context, the latter can
access the current state and slot type provided by TreeTDMA. Detailed configuration
of TreeTDMA is possible through OTcl (cf. Appendix A.1.3).

68

4.3 Implementation of the Framework

sleep guard

new send slot

tx

turnwait

rx

collision

no packet
to send

received packet [ignore] guard timer expires

received
packet [ignore]

tx done

received packet [ignore]

transceiver
ready

no packet
received

received packet

rx done [pro-
cess packet,

discard on error]

received high-power
packet [collision]

received low-power
packet [capture]

received packet
[collision]

rx done [discard packet]

received packet [ignore]

� Figure 4.8: MAC layer state machine for a sending slot (child); the abbreviations
rx and tx stand for reception and transmission

sleep wait

new receive slot

rxcollision

turn

tx

no packet
received

received packet

received high-power
packet [collision]

received packet [collision]

rx done [dis-
card packet]

rx done, packet er-
rors [discard packet]

received low-
power packet

[capture]

transceiver ready

received packet [ignore]

received
packet [ignore]

tx done

received packet [ignore]

rx done, no error
[process packet]

� Figure 4.9: MAC layer state machine for a receiving slot (parent); the abbrevia-
tions rx and tx stand for reception and transmission

69

4 Simulation Framework

The class diagram in Figure 4.10 also shows the classes responsible for slot manage-
ment. Their main purpose is to store slots and provide an interface to let TreeTDMA
check, if the current slot is a sending or receiving slot. In addition, it takes care of
identifying duplicate packets by the MAC sequence number and interrupted links
by counting missed packets. It also stores information about slots to skip and if the
last packet of a child has been received. If a node does not have an active parent
and no active children, it does not have to participate in forwarding packets any
longer and may sleep for the remainder of the collection phase. This decision has
to be made by the MAC to reduce additional connections between ns-2 layers. On
reception of an acknowledgment, the success flag of the acknowledgment and the
last-packet flag of the corresponding data packet have to be checked. In addition, the
MAC has to investigate the abort flag of an incoming acknowledgment and inform
the slot management, if it is set. Because this functionality is protocol specific, it has
to be implemented by a derived class. This is done by using the interface of the slot
management. It mainly consists of methods to be called on packet or acknowledgment
reception, missed packets, and when sending an acknowledgment.

� interface �
TDMAFunctionality

transmit()
txrxTurnaroundStart()
sleep()
rxFailed()

� interface �
TDMACallbacks

slotReady()
txReady()
txDone()
rxReady()
rxDone()
txrxTurnaroundDone()
txRetriesExpired()
rxIdleTimeout()

� abstract �
TreeTDMA

slotType_
slotState_

prepareNextSlot()
recvIncoming()
recvOutgoing()
- capture()
- collision()

StaticTreeTDMA

txReady()
txDone()
rxReady()
rxDone()
txrxTurnaroundDone()
txRetriesExpired()
rxIdleTimeout()
recvOutgoing()
rxFailed()

SendSlotSet

+ isActive()
+ isMember()
+ getSlotsToSkip()
+ setSlotsToSkip()

RecvSlotsMap

+ isActive()
+ isMoreDataIncoming()
+ isRecvSlot()
+ isDuplicate()
+ getSlotsToSkip()
+ setSlotsToSkip()
+ pktReceived()
+ pktMissed()
+ ackReady()

� Figure 4.10: Basic class diagram of the TDMA protocol

Implementation of the basic data-collection protocol is realized by the class
StaticTreeTDMA. To permit a convenient configuration of the TDMA schedules,
it defines the OTcl commands add-sendslot and add-recvslot. Furthermore,

70

4.3 Implementation of the Framework

it actualizes all transitions as shown in Figures 4.8 and 4.9. The most relevant part
of implementation is the correct handling of received packets as demanded by the
protocol design.

The extensions required for Type II scheduling (cf. Section 4.2.5) are added
by SlotPassingTreeTDMA. Configuration of the maximum number of bytes used
for sending a set of slots is possible through OTcl. Two separate parameters exist for
standalone packets and piggybacking. Furthermore, the forwarding strategy can be in-
fluenced by specifying the number of slots a node must forward before it may another
slot itself. Slot compression, or coding, has been designed to be a plugable component
to be configured via OTcl. The class SlotPassingTreeTDMA owns a pointer to the
abstract base class SlotCoder that only defines the interface for slot encoding and
decoding. An OTcl command is provided to attach an instance of a derived class. The
described run-length coding is realized by the derived class RLCSlotCoder.

4.3.5 Physical Layer

The physical layer of ns-2 offers two methods for switching the transceiver on and
off via the MAC. The original intention of this is to simulate energy consumption, so
that calling these methods does not have an effect, unless an energy model is used.
Removing this restriction accelerates simulation time considerably, because the phys-
ical layer immediately discards any incoming packet, if the transceiver is switched off.
This is a striking performance improvement, as the wireless channel of ns-2 distributes
a copy of a sent packet to each node within the delivery radius without looking at
a receiving node’s transceiver state. However, the required changes must be directly
applied to the wireless physical layer of ns-2, because the affected methods cannot be
overwritten by a derived class.

Simulating packet loss is done by using the bit error model from [Unt08], because
the facility offered by ns-2 is erroneous. This requires to extend the wireless physical
layer of ns-2 by deriving the class WSNPhy. It adds two base-class pointers to make a
modulation and an encoding scheme available. Attaching the corresponding instances
is done via OTcl. On reception of an incoming packet, WSNPhy obtains the bit error
rate by invoking the modulation scheme. Next, the encoding scheme is used to cal-
culate the packet error rate from the BER and the packet length. Finally, a random
number in the interval r0, 1s is computed and compared with the packet error rate.
If the random number is smaller, the packet is marked erroneous.

71

4 Simulation Framework

Module Language Lines of Code

ns-2 Modules 3905
Application C++ 173
Routing C++ 820
Buffer C++ 292
TDMA Base Class and Slot Management C++ 1032
Basic TDMA Protocol C++ 812
Protocol Extensions for Type II C++ 776

Simulation Framework 1560
Startup Script Perl 106
Initialization and Configuration OTcl 657
Settings Parser Library OTcl 334
Evaluation and Processing OTcl 176
Post-Processing Perl 287

Simulation Environment Creation 2259
Topology Creation Perl 1030
Tree Construction Perl 314
Fill Level Initialization Perl 101
Slot Assignment Perl 814

Sum 7724

� Table 4.2: Lines of code

4.3.6 Evaluation and Logging

The logging system provided by [Unt08] has been used to generate detailed trace
files for the different layers. This facility is helpful in order to understand internal
operations of each node in a simulated network. It is also useful for debugging, but
inappropriate for simulation evaluation. Continuous logging considerably affects run-
time performance and log files consume large amounts of memory. Therefore, logging
has only been used during the implementation and testing phase.
Evaluation of a simulation is achieved by a variety of counters and state variables

that have been added to the different C++ classes. At the end of a simulation,
for each node in the network, their values are written to an evaluation file. Among
them are counters for sent and received packets, buffer utilization, and skipped slots.
Furthermore, each node records its transceiver usage and the time at which it has
entered the final sleep mode, i.e., stopped receiving and forwarding packets. In total,
54 evaluation variables are available. They are listed in Table A.5. The format of the
corresponding files is explained in Appendix A.2.

72

Chapter5
Simulation and Evaluation

In this chapter, the TDMA schedules discussed in Chapter 3 are compared via simu-
lation using the framework described in Chapter 4. At first, the choice of simulation
settings and parameters is addressed, followed by the evaluation of the simulation
results. Finally, the characteristics of the different TDMA schedules are summarized.

5.1 Simulation Parameters

In the following, the configuration of the simulation framework is explained and the
settings used for evaluation are described.

5.1.1 Configuration of ns-2

The configuration of ns-2 consists of the setup of the radio transceiver and wireless
channel characteristics mainly. The choice of reasonable values is required here to
make results meaningful. As the Scatterweb ESB nodes are a commonly employed
hardware platform and appropriate parameters are available, configuration is based
on these values.

The radio transceiver used for the ESB sensor nodes is the RF Monolithics
TR1001 chip. The frequency used for transmission is at 868.35MHz with a data
rate of 19.2 kbit/s and On-Off-Keying. Maximum transmission power is settled at
0.347mW �̂ � 4.6 dBm with a communication radius of Rcom � 40m, which is cho-
sen according to real-world experiments with the ESB nodes. These parameters lead
to θrx � 1.47 � 10�7 mW �̂ � 68 dBm and θcs � 1.47 � 10�8 mW �̂ � 78 dBm for
θint �̂ 10 dBm. The latter is adopted from the IEEE 802.11 implementation for ns-2,
since no value is available for wireless sensor nodes.

73

5 Simulation and Evaluation

The two-ray ground propagation model is used for three reasons. It is more realistic
than the free-space model and considerably faster than the shadowing model. It also
enables a reliable communication, where packet loss can be introduced and is fully
controlled by the used bit error model. Hence, simulation with and without packet
loss, based on the same propagation model, becomes possible and thus permits an
unbiased analysis of the influence of packet loss, as mandated in Section 3.4. The
bit error model used for a part of the simulations is that from Equation 2.4. To
determine the signal-to-noise (SNR) ratio (the real SINR is not computed as explained
in Section 4.1.3), θcs is used as the noise, since it is the sensitivity of the transceiver.
The maximum bit error rate (of a packet received with power θrx at the edge of Rcom)
evaluates to BER � 8�10�4, which is a realistic value for the TR1001 transceiver.

The layout of the transmitted packets is as follows. Preamble and postamble make
up for 11 bytes (according to the Scatterweb platform, version 2.2). Another 10 bytes
are consumed by the MAC header. 2 bytes each are used for the sender, receiver, and
a checksum (that is not actually calculated). The packet type, the MAC sequence
number, and the packet length each consume one byte. Another byte is due to addi-
tional flags, e.g., signaling the last packet and if a number of slots to skip is added.
If the latter is true, the MAC header is increased by one byte. Hence, the maximum
number of slots to skip is limited to 255. The payload of a data packet is 30 bytes, in-
cluding the address of the source and the data packet sequence number (each 2 bytes).
The remainder of the payload, e.g., 26 bytes, is used for sensor readings. The total
number of bytes to be transmitted sums up to 51 bytes (52 bytes, if slots have to
be skipped). For Type II, up to 4 bytes may be additionally used for piggybacking
slots. Standalone packets are allowed to have a maximum number of 34 bytes for
transmitting slots. In both cases, an additional byte is required to store the number
of actually used bytes for slot encoding. Note that data packets and packets only
used for slot transmission have the same maximum size. Acknowledgments have to
carry the address of the source, the sequence number of the data packet, and the flags
introduced in Section 4.2.4 on page 62. This results in a payload of 5 bytes and thus
an overall size of 26 bytes (27 bytes, if slots have to be skipped). Keepalive packets
only consist of the pre-/postamble and the MAC header, which includes the type.

A data packet as explained above leads to a packet reception rate of approximately
72%. Here, plain On-Off-Keying without the usage of error correcting codes is as-
sumed. Choosing r � 10 assures a probability of successful packet delivery close to 1.
This has been verified by simulation and is necessary, as runtime is only comparable,
if all data packets are collected by the sink. However, for the simulations without

74

5.1 Simulation Parameters

application of the bit error model, r � 3 is selected. This is a proper value in a real
deployment, since it would lead to a packet delivery rate above 99%. An appropriate
choice of r is required to simulate a realistic delay of slot reuse for Type II.

Timing of the TDMA slot as described in Section 4.2.4 is as follows. The guard
interval lasts 2ms, which is enough to switch on the transceiver and compensate
for small clock drifts, i.e., synchronization errors. Turning around the transceiver
is model led to take 25µs. However, processing a received packet and creating an
acknowledgments is simulated to take 1ms, which actually outlasts the turnaround
time. The maximum waiting time for packet reception is 5ms. A parent prolongs this
by the guard interval. Adding the guard interval, the packet processing time, and the
highest possible propagation delay to the maximum time required for transmitting
a packet and an acknowledgment, yields that a slot length of 40ms is sufficient.
However, the actual slot length is not relevant, since runtime T is measured in slots,
which are of equal length for all schedules. Note that the maximum overhead of 5 bytes
produced by piggybacking slots accounts for 2ms only. Hence, it can be considered
negligible, as simulation results will be afflicted with error of measurements anyway.

The packet history employed by the routing layer can hold up to 10 packets. To
evaluate the impact of limited buffers, B � 200 and B � 8 are compared. Here,
the former is chosen to keep simulation time low in favor of a higher number of
simulations, i.e., increase the number of samples to achieve a higher accuracy of the
results. The soft limit is fixed at B̃ � 150 according to simulational experience: It
is possible that a node vi advises its children to skip slots, but cannot forward any
packets while its children are skipping. This occurs, if vi is also required to skip
slots. Hence, when its children restart sending, it is desirable to have space left in the
buffer of vi, so that no packets have to be dropped. This situation has been frequently
observed for Type I schedules. Note that B̃ is not effective for B � 8.

Finally, the forwarding strategy for Type II is selected according to the outcome
of [TW07b]: Each node vi always forwards hi � 1 slots before reusing one itself.
This strategy is designed to make slots available close to the sink with high priority
in order to quickly overcome the bottleneck, i.e., low throughput σ as discussed in
Section 2.3.2.

5.1.2 Settings

In order to simulate and compare the TDMA schedules presented in Chapter 3 with
the parameters identified in Section 3.4.2, suitable simulation settings are created.

75

5 Simulation and Evaluation

Type % N Count C Li

random grid 6 100, 300, . . . , 900 50 p8q,8 2, 20, 40, 2�40
random grid 9 100, 300, . . . , 900 50 8,8 2, 20, 40, 2�40
random grid 12 20, 30, . . . , 100, 300, . . . , 900 50 8,8 2, 20, 40, 2�40, 50�150
random grid 18 100, 300, . . . , 900 50 8,8 2, 20, 40, 2�40
random grid 24 100, 300, . . . , 900 50 8,8 2, 20, 40, 2�40, 50�150

grid (5) 101 11 (4) 2, 20, 40, 2�40, 50�150
circular — 20, 30, . . . , 100, 300, . . . , 900 1 2�8 2, 20, 40, 2�40

� Table 5.1: Parameters of the created simulation settings

They are based on three different types of topologies: random grid, grid, and circular.
The corresponding setups and their intention are discussed in the following. Table 5.1
gives a summary.

Since network density % is an important characteristic of a network, values from 6

to 24 are considered in the random-grid topologies. These values have been identified
empirically and are combined with various network sizes. Small networks (N 100)
are only produced with % � 12, as density has less impact here. For each set of
parameters, 50 topologies are created with the sink placed approximately in the
center. Two different trees are built for every topology: one with an unlimited number
of children per parent (C � 8) and one with C � 8. The latter is a trade-off between
ensuring connectivity and saving memory. For % � 6, both trees are the same, so
that only the ones with C � 8 are used for simulation. An example random-grid
topology with N � 100 and C � 8 is depicted in Figure 5.1(a). The sink is marked
by a square, and the tree is indicated by gray edges.

(a) random grid (b) grid (c) circular

� Figure 5.1: Topology examples with a corresponding tree

76

5.1 Simulation Parameters

Type I Type II Type III SPR

Slot ordering – Ò, Ó Ò, Ó (Ó)
Parameters CCH 3-hop / γ�1.9 – no λ / λ � 5, 10, 25 κ � 4, 5, 6

� Table 5.2: Slot assigment parameters

The objective of the grid topologies is to investigate the influence of the sink’s
position and the number of its children. For this purpose, a grid of 10�10 nodes
is created with a horizontal and vertical spacing of 25m. From this, 11 different
topologies with varying position of the sink are derived. The sink is placed on the
diagonal between the lower left corner, where it has one child only, and the center,
where it has 4 children. From the center on, the sink is placed on the vertical line
ending at the bottom of the topology. Except for the lower left and lower centered
position, the sink is always placed in the center of its four children. Figure 5.1(b)
shows one of these topologies with the sink placed on the diagonal. Particularly note
the difference to the random-grid topology and the heavily unbalanced tree.

Circular topologies are created to verify the runtime estimations from Section 3.2.4.
Nodes are aligned in circles around the sink, so that balanced, minimum-depth trees
with different C result. Only one topology is created for different values of N , since
node placement is deterministic. An example with N � 100 and C � 4 is shown in
Figure 5.1(c). It already reveals that these topologies are impractical to validate the
estimations for Type I, since density depends on C and N .

For all topologies, different initial buffer fill levels Li are created, including equally
distributed and varying fill levels among nodes. This is an important point, since
especially Type III is expected to be sensitive to the fill level. At last, TDMA schedules
are created for each combination of topology, tree, and buffer fill levels. Two different
Type I slot assignments are created, both based on CCH, as explained in Section 4.2.2.
For the interference-free variant, γ � 1.9 can be derived from Rcom and the delivery
radius calculated by ns-2. It is regarded as CCH γ � 1.9 throughout this chapter.
Slot assignments for (enhanced) Type II and III are produced in both ascending and
descending order from leafs to the sink. For Type III, the load-aware extension is
used with λ � 10. For topologies with % � 12, λ � 5 is also applied. In the case of
buffer fill levels between 50 and 150 packets, λ � 25 must be used, since R is likely
to become greater than 100, 000, but slots are encoded in 2 bytes. A brief summary
of the parameter values is provided in Table 5.2.

77

5 Simulation and Evaluation

5.2 Detailed Simulation Results

In this section, the simulation results, obtained from more than 400,000 individual
simulation runs, are presented. First, the created settings are analyzed. For clearness,
a runtime analysis for each of the different TDMA schedules is carried out individu-
ally as the second step. A comparison of runtime and energy-efficiency is presented
afterwards. Runtime will be referred to as the number of slots per created packet.
This simplifies comparison and gives a more compact representation of simulation
results. To be consistent, energy-efficiency is also scaled using the overall number of
packets, i.e., dividing energy by L�0 . All runtime and energy figures show the mean of
the results obtained from the 50 different topologies each.

5.2.1 Topology and Tree Characteristics

The random-grid topologies and trees created for simulation are analyzed in the fol-
lowing, since their characteristics have an important impact on the expected runtime,
as discussed in Chapter 3.
The tool for creating topologies with a specified density has been introduced in

Section 4.2.2. Figure 5.2(a) shows the average density of the generated topologies.
Apparently, the real densities fall somewhat short as compared to the specified ones,
but the relation between them is approximately kept and the standard deviation is
at most 0.3. Hence, the specified values will be used to refer to the corresponding
topologies. The actually achieved densities are almost independent of the number of
nodes. A small decline can be observed for N � 100 only. The same observations
are true for the average maximum number of nodes inside a communication circle as
depicted in Figure 5.2(b). Here, the standard deviation is between 0.4 and 1.3. The
reason for the dependency on N is the way the script works. It sets up the spacing
of the initial grid so that the expected neighborhood size of a node in the center of
the topology meets the specified density. As a result, the actual density falls short,
because nodes at the edge have fewer neighbors than those in the center. This has a
higher impact in small networks, as they exhibit a larger fraction of nodes close to
the edges.
Although the actual densities depend slightly on the network size, the correspond-

ing topologies ensure more equally sized neighborhoods than those created by a
completely random placement strategy. This is an important feature, because it
reflects the desired close-to-uniform distribution in many data-gathering scenarios.
Figures 5.2(c) and 5.2(d) show histograms of the neighborhood sizes found in two

78

5.2 Detailed Simulation Results

0

12

24

36

100 300 500 700 900

d
en

si
ty

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(a) density

0

12

24

36

100 300 500 700 900

m
a
x
im

u
m

n
ei
g
h
b
o
rh
o
o
d

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(b) neighborhood size

0

30

60

90

120

150

0 5 10 15 20 25 30 35

n
u
m
b
er

o
f
n
o
d
es

neighborhood size

(c) random-grid displacem., N�900, %�24

0

30

60

90

120

150

0 5 10 15 20 25 30 35

n
u
m
b
er

o
f
n
o
d
es

neighborhood size

(d) random placement, N�900, %�24

� Figure 5.2: Average density and neighborhood size

networks with 900 nodes. The former has been created using random-grid displace-
ment with specified density % � 24. The nodes of the second one have been placed
using a uniform random distribution. Here, the square area has been chosen in or-
der to achieve a similar overall density as for the first one. The grid-based solution
produces a considerably smaller deviation. 58% of all nodes have between 21 and 25

neighbors as opposed to 37% in the completely random topology.

The significant characteristics of the trees built upon the just analyzed topologies
are their depth and the number of leafs. Both influence the number of slots created
and the runtime achieved by the TDMA schedules under consideration. Figures 5.3(a)
and 5.3(b) show that there is almost no increase in tree depth h, if the maximum
number of children is restricted to C � 8. As a matter of fact, minimum depth h�

as discussed in Section 3.2.1 is not achieved. This is no surprise, since the minimum
depth actually depends on the maximum distance between a node of the network
and the sink (cf. Section 2.2.2). In addition, the average depth of individual nodes as

79

5 Simulation and Evaluation

0

5

10

15

20

25

30

100 300 500 700 900

tr
ee

d
ep
th

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(a) depth, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

tr
ee

d
ep
th

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(b) depth, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

n
o
d
e
d
ep
th

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(c) node depth, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

n
o
d
e
d
ep
th

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(d) node depth, C � 8

� Figure 5.3: Average tree and node depth

shown in Figures 5.3(c) and 5.3(d) is hardly increased by limiting C � 8. The highest
difference is observed for % � 24. In the case of N � 900, the average node depth
increases from 5.33 by approximately 10% to 5.87.

The just addressed average node depth gives an estimate of minimum runtime,
if slots are not spatially reused and initial fill levels do not vary among nodes. As
this runtime is the same as the lower bound for Type II and Type III, divided by
the network load L�0 , it follows from Equations 3.9 and 3.10 the minimum average
runtime (in slots) per packet.

Tmin �
¸
viPV

Lhi ùñ Tmin � Tmin
pN�1qL � 1

N�1

¸
viPV

hi (5.1)

This result is of benefit in order to evaluate runtime performance of the different
TDMA schedules.

80

5.2 Detailed Simulation Results

0

2

4

6

8

100 300 500 700 900

ch
il
d
re
n
p
er

n
o
n
-l
ea
f

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(a) average children per node

0

20

40

60

80

100

100 300 500 700 900

le
af
s
[%

]

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(b) leafs

� Figure 5.4: Average number of children and leafs for C � 8

The number of children per node influences runtime as described in Section 3.2.4.
The average number per non-leaf is depicted in Figure 5.4(a). Again, node density
has a considerable influence. As outlined in Section 2.2.2, the average stays well
below the possible maximum, so that the restriction of C � 8 does not have a
great influence on this aspect. Yet, C � 8 restricts the possible number of children
of the sink particularly in dense networks, where C � 8 produces values of C0

as large as 22. However, the impact is expected to be small, because many of those
additional children are either leafs or have small subtrees. The fraction of leafs, shown
in Figure 5.4(b), is almost independent of N . This finding is closely correlated with
the average number of children, which can be derived from Equation 3.19. Note that
this fraction stays almost unchanged for C � 8, so that it is not displayed.

5.2.2 Number of Slots

In Chapter 3, lower and upper bounds for the number of slots produced by the
different slot assignments have been estimated. Figures 5.5(a) and 5.5(b) show the
average number of actually produced slots for C � 8 and densities % � 12 and % � 24,
respectively. They disclose that SPR produces more slots with increasing density,
which is caused by the higher fraction of leafs (cf. Figure 5.4(b)). With fixed density,
the number of slots grows linearly with N . Hence, the behavior as formulated in
Equation 3.19 on page 43 appears to be valid, although the upper bound is not
reached.

81

5 Simulation and Evaluation

0

2

4

6

8

100 300 500 700 900

nu
m
b
er

of
sl
ot
s
[1
00
0]

number of nodes

CCH
CCH, γ � 1.9
SPR, κ � 4
SPR, κ � 5
SPR, κ � 6
Type III, C � 8
Type III, C � 8

(a) R for % � 12

0

2

4

6

8

100 300 500 700 900

nu
m
b
er

of
sl
ot
s
[1
00
0]

number of nodes

CCH
CCH, γ � 1.9
SPR, κ � 4
SPR, κ � 5
SPR, κ � 6
Type III, C � 8
Type III, C � 8

(b) R for % � 24

0

10

20

30

100 300 500 700 900

nu
m
b
er

of
sl
ot
s
[1
00

0]

number of nodes

theoretical minimum
no λ
λ � 10, Li � 20
λ � 10, Li � 2�40
λ � 10, Li � 40

(c) R for Type III, % � 12

0

25

50

75

100

125

150

100 300 500 700 900

n
u
m
b
er

o
f
sl
o
ts

number of nodes

% � 12
γ � 1.9, % � 12
% � 24
γ � 1.9, % � 24

(d) R for Type I (CCH)

� Figure 5.5: Average number of slots for C � 8

Since density influences the average node depth of the generated trees, it also affects
the number of slots RIII produced by Type III. This is explained by Equation 3.5.
C � 8 leads to a considerable increase for % � 24 only. Figure 5.5(c) gives a detailed
overview about RIII. It exhibits that plain Type III produces a multiple of the esti-
mated minimum of slots given by Equation 3.7, but the gradients are proportional.
Hence, the estimation gives a good approximation of the general behavior. The load-
aware variant of Type III produces just a multiple of the plain version, as discussed
in Section 3.2.2 on page 31.

The detailed look at CCH in Figure 5.5(d) reveals that the round length is actually
proportional to the density, as estimated in Section 3.2.2 on page 29. This also explains
the dip for N � 100. The interference-free variant CCH γ�1.9 increases the overall
number of slots with a factor between 1.1 and 1.7. This factor is generally smaller
in dense and in small networks. Note that the limitation of C � 8 has almost no
influence on RI and is therefore not displayed.

82

5.2 Detailed Simulation Results

0

5

10

15

20

100 300 500 700 900

co
lli
sio

n-
affl

ic
te
d
lin

ks
[%

]

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(a) collision-afflicted links

0

25

50

75

100

100 300 500 700 900

yi
el

d
[%

]

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(b) yield

� Figure 5.6: Percentile of collision-afflicted links and yield for CCH 3-hop, C � 8

5.2.3 Type I

Type I schedules are generally collision-afflicted, so that this issue requires analysis.
Figure 5.6(a) depicts the number of links experiencing collisions for different network
sizes and densities. Up to 10% of all links suffer from collisions in a network with
density % � 6. This high value comes from the fact, that the exchange of k-hop infor-
mation is particularly insufficient in sparse networks: Two nodes may just be outside
communication range and there is no k-hop connection between them. Note that
k � 3 for our implementation. The percentile of collision-afflicted links approaches
zero for large values of %. Yet, 0% is achieved in small networks only, because of the
declining likelihood of nodes (or links) being assigned the same slot. This is true,
because RI is just influenced by the density.

As can be obtained from Figure 5.6(b), the yield (cf. Section 3.4.1) is severely
affected. Even for N � 900 and % � 12, where less than 3% of all links are collision-
afflicted, it is as low as 76%. This can be explained as follows. If a link suffers from
a collision, the latter will occur every time that link is used, because each link is
assigned just one slot. Hence, a collision-afflicted link leads to a link failure, which
provokes the disconnection of the complete subtree and the collection of its data
becomes impossible. This insight and the results of Figure 5.6(b) render a runtime
evaluation for CCH bootless. In consequence, evaluation will be restricted to the
collision-free variant CCH γ�1.9.

Runtime of Type I depends on the round length R and the largest subtree of
the sink (cf. Section 3.2.4). The latter is found to grow almost linearly with N for

83

5 Simulation and Evaluation

the constructed trees. Hence, runtime is affected by the round length mainly, which
is supported by Figure 5.7(a). It depicts the runtime of CCH γ � 1.9 for different
network densities, C � 8, and equally distributed buffer fill levels in the absence of
bit errors. The relation of densities is reflected by the runtime. The figure also shows
that runtime is not influenced by the buffer size B. The small dip in runtime for
N � 700 is caused by slightly smaller largest subtrees. This appears to be due to the
limited size of topology and tree samples. In addition, the grid topology with varying
sink positions approves Equation 3.8 up to a scale factor, which is the ratio between
round length and density.

As depicted in Figure 5.7(b) and argued in Section 3.2.6, packet loss increases
runtime scarcely. Since the children of the sink can be considered the bottleneck,
solely their links to the sink may slow down runtime in the case of lost packets.
However, these children are comparably close to the sink—this is ensured during tree
construction—, so that packet loss is rare. This is true, because the bit error rate
depends on signal strength, which gains with closeness (cf. Section 2.1.3).

The limitation of C � 8 increases runtime of CCH γ � 1.9, as illustrated by
Figure 5.7(c) with C � 8. The effect of a limited C is larger for greater densities, but
is more distinct than suggested by the corresponding change of average node depth.
The explanation of this is found in Section 5.2.1 on page 81. In dense networks, the
sink is able to claim more children. Although the corresponding subtrees are quite
small and the overall tree becomes unbalanced, the size of the largest subtree is
reduced. Thus, runtime decreases.

Figure 5.7(d) gives information about runtime in small networks. Even here, a
small influence of C is observable. In contrast, the graph shows that there is almost
no difference in runtime between varying and equally distributed buffer fill levels. For
small N , runtime is comparably low. This is caused by the small round length. Note
that the round length actually increases from an average of 19 for N � 20 to 37 for
N � 40. The dip at N � 80 is due to the variation of largest subtrees again.

The findings in this section support the theoretical analysis. In particular, the round
length is generally proportional to the observed density. Thus, runtime depends on
the density mainly, since subtrees grow almost linearly with N . Although a limitation
of C influences runtime, its impact is smaller than suggested by Equation 3.8. Finally,
the size of B does not play a role, nor does packet loss pose a severe hazard, if
the bit error rate stays comparably low. Most importantly, it shows that the 3-hop
approach is incapable of producing collision-free schedules, which heavily impairs
yield. CCH γ�1.9 solves this problem, but cannot be implemented distributedly.

84

5.2 Detailed Simulation Results

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, % � 6
B � 200, % � 9
B � 200, % � 12
B � 200, % � 18
B � 200, % � 24

B � 8
B � 8
B � 8
B � 8
B � 8

(a) T : no bit errors, C � 8, Li � 40

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(b) T : bit errors, C � 8, B � 200, Li � 40

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

% � 6
% � 9
% � 12
% � 18
% � 24

(c) T : no bit errors, C � 8, B � 200, Li � 40

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

C � 8, Li � 40
C � 8, Li � 2�40
C � 8, Li � 40
C � 8, Li � 2�40

(d) T : no bit errors, B � 200, % � 12

� Figure 5.7: Type I CCH γ�1.9 runtime

5.2.4 Type II Enhanced

The first question regarding (enhanced) Type II concerns the slot ordering as de-
scribed in Section 2.3.2 on page 23. The answer is presented in Figure 5.8(a): Both
variants achieve the same runtime. This observation holds for equal and variable
buffer fill levels, if the Li are well above the number of possible retransmissions r. If
this is not the case, slots are sparsely reused and the ascending order is faster. The
explanation is according to the consideration in Section 3.2.4 on page 33 for Type III.
As a result, it can be expected that Type II will achieve the same runtime even with-
out explicit slot assignment, i.e., every node uses its unique identifier to determine
its sending slot. Besides tree construction, no extra effort is required then, as a node
can tell the slots of its children by their identifier, too.

Unlike Type I, the limited buffer increases runtime of Type II. The explanation is as
follows. If buffers are limited, they fill up quickly on nodes close to the sink, because

85

5 Simulation and Evaluation

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, desc
B � 200, asc
B � 8, desc
B � 8, asc

(a) runtime

0

200

400

600

800

1000

1200

1400

100 300 500 700 900

b
u
�
er

�
ll
le
v
el

number of nodes

B � 200, desc
B � 200, asc
B � 8, desc
B � 8, asc

(b) maximum buffer fill level

� Figure 5.8: Type II, influence of slot ordering for C � 8, % � 12, Li � 2�40

they have more incoming than outgoing packets (cf. Figure 2.3 on page 14). Flow
control then requires the children of these nodes to wait, resulting in an increased
likelihood of buffer overflow on those children. This procedure spreads in opposite
direction of packet flow. In conclusion, the average time a node needs to forward all
data of its subtree escalates. As a result, reusing slots is delayed and runtime increases.
This problem is aggravated in larger networks, since the load of each node is increased.
Figure 5.8(b) depicts the actually observed maximum buffer fill level for B � 8. It
shows that B̃ has been always exceed for B � 200. The graph for B � 8 indicates
the minimum required buffer size to avoid the just explained runtime threat.

Runtime of Type II is sensitive to the initial buffer fill levels, as shown in Fig-
ure 5.9(a). For high loads, e.g., Li � 50�150, runtime is heavily elevated. As stated
in the preceding paragraph, this is due to buffer congestion and the hereby caused
delayed slot reuse. This is substantiated by the behavior in case of unlimited buffers.
Note here, that runtime is close to the optimum as indicated by the average node
depth and behaves qualitatively as estimated in Section 3.2.4 on page 32. Although
the results do not reveal a detailed relation between initial fill level and runtime, it
can be inferred that Type II performs slightly better in the presence of initial buffer
fill levels of equal size. This is presumably related to later slot reuse in subtrees with
higher load. However, in a realistic setup, leafs can be expected to have less packets
left from a previous collection phase than nodes close to the sink. In this situation,
Type II performs better, as slots from leafs can be reused earlier than in a completely
random distribution of fill levels.

Bit errors, see Figure 5.9(b), have a noticeable linear influence on runtime, which

86

5.2 Detailed Simulation Results

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 2�40
B � 200, Li � 50�150
B � 200, Li � 20
B � 200, Li � 40

B � 8
B � 8
B � 8
B � 8
B � 8

(a) T : no bit errors, % � 12, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 2�40
B � 200, Li � 50�150
B � 200, Li � 20
B � 200, Li � 40

B � 8
B � 8
B � 8
B � 8
B � 8

(b) T : bit errors, % � 12, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 2�40
B � 200, Li � 50�150
B � 200, Li � 20
B � 200, Li � 40

B � 8
B � 8
B � 8
B � 8
B � 8

(c) T : no bit errors, % � 24, C � 8

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

C � 8, Li � 40
C � 8, Li � 40
C � 8, Li � 2� 40
C � 8, Li � 2� 40

(d) T : no bit errors, % � 12, B � 200

� Figure 5.9: Type II runtime

is larger as compared to Type I. Yet, this is partly due to the increased number of
retransmission r for ensuring connectivity: Reusing slots of a node imposes a delay
of r slots (cf. Section 4.2.5 on page 63). Caused by lower average node depth, runtime
decreases with growing density. The improvement, shown in Figure 5.9(c), is according
to the corresponding graphs in Figure 5.3(d) on page 80 for medium L.
In contrast to Type I, C does not considerably impair runtime in case of limited

buffers, which is shown for small networks in Figure 5.9(d). This observation has
two reasons. Firstly, larger subtrees are assigned more slots, so that reusing them
compensates for the higher load. Secondly, a larger number of children may lead to
fast buffer congestion. In turn, slots can be reused later.

Runtime analysis as conducted in Section 3.2.4 comes close to the observed behavior
of Type II during simulation. The minimum-tree experiments approve its correctness.
Yet, it stays open, if a different reuse strategy may improve performance. Type II is
very fast in small networks, but runtime performance in large networks is reduced

87

5 Simulation and Evaluation

by buffer limitations. In addition, runtime is affected by initial buffer fill levels. This
includes both equally distributed and varying fill levels among nodes. Supported by
the grid experiment, an important characteristic of Type II is that the position of
the sink is important. A centered sink leads to a lower average node depth and thus
better runtime.

5.2.5 Type III

Two variants of Type III have been introduced in Section 2.3.2 on page 25: the plain
and the load-aware one. Runtime of both is compared in Figures 5.10(a) and 5.10(b)
for variable initial buffer fill levels. As expected, the load-aware approach is faster,
because slots are assigned depending on individual node loads. A smaller λ allows for
better adaptation to the actual load and reduces runtime further. Yet, the smaller λ
becomes (and the higher the Li get), the more slots are produced. At some point, a
subset of nodes is alloted a set of (consecutive) slots exceeding B. In this case, runtime
is dramatically elevated, because a node cannot use all of these slots for sending.

Figure 5.10(b) also shows the theoretical runtime performance for unlimited buffers.
However, this is not a realistic situation, so that the apprehension from Section 3.2.5 is
justified. In consequence, the load-aware approach is suitable only for small networks
with low load. Figure 5.10(d) reveals the actually required buffer sizes in the given
scenario in order to achieve best possible runtime for Type III. Another aspect on
the same matter is that of flow control, which may increase runtime unintentionally.
The current strategy causes early waiting advices, which is not suitable for Type III.
If the sum of slots assigned to a node’s children is above B̃, at least one child cannot
use all of its slots. This is true, because that node receives more than B̃ packets per
round. As it cannot forward packets before having receiving packets from all of its
children, it will advise at least one child to wait for the remainder of the current
round. Furthermore, in the case of buffer congestion, subtrees are not emptied with
the same pace. This implies, that some subtrees will have forwarded all data to the
sink, whereas others still store a huge amount of data. To collect these packets, the
slots of the empty subtree cannot be used and thus prolong runtime.

In contrast to the results for Type II, slot ordering has a decisive influence on
runtime performance of Type III. According to the analysis in Section 3.2.4, Fig-
ure 5.10(c) shows that the ascending variant is generally superior. This is substanti-
ated by the results for B � 8. In contrast, both variants reach an almost equal, poor
runtime, when suffering from buffer overflow. In the remainder of this section, only

88

5.2 Detailed Simulation Results

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200
B � 200, λ � 10
B � 200, λ � 5

B � 8
B � 8
B � 8

(a) influence of λ for asc. order Ò

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, λ � 5
B � 200, λ � 10
B � 200

B � 8
B � 8
B � 8

(b) influence of λ for asc. order Ò

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, desc
B � 200, asc

B � 8
B � 8

(c) influence of slot ordering

0

200

400

600

800

1000

1200

1400

100 300 500 700 900

b
u
�
e
r
�
ll
le
v
e
l

number of nodes

B � 200
B � 200, λ � 10
B � 200, λ � 5

B � 8
B � 8
B � 8

(d) maximum buffer usage for asc. order Ò

� Figure 5.10: Type III, influence of load-awareness factor λ and the ordering of
slots, % � 12, C � 8, Li � 2�40, no bit errors

the ascending variant will be looked at, since it is faster, when buffer limitations do
not have an impact.

In the following, runtime of the plain Type III schedule is analyzed. Figure 5.11(a)
shows runtime performance for different initial buffer fill levels. As mentioned above,
the limited buffer size leads to a significantly higher runtime per packet as soon as
buffer congestion occurs. This depends on the network size and average tree depth, as
this influences the number of slots per node (cf. Section 3.2.2 on page 30). For % � 12,
buffer limitations start to become an issue in the region of 300 to 500 nodes. As
runtime is scaled by the number of packets, it is particularly affected for small initial
fill levels. The plot also shows that the highest initial fill level determines overall
runtime. The time required per packet is almost doubled from Li � 40 to Li � 2�40.
As the second can be expected to give approximately half of the overall load of
the first, this implies that absolute runtime is in the same order of magnitude. An

89

5 Simulation and Evaluation

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 2�40
B � 200, Li � 50�150
B � 200, Li � 20
B � 200, Li � 40

B � 8
B � 8
B � 8
B � 8
B � 8

(a) T : no bit errors, % � 12, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 2�40
B � 200, Li � 50�150
B � 200, Li � 20
B � 200, Li � 40

B � 8
B � 8
B � 8
B � 8
B � 8

(b) T : bit errors, % � 12, C � 8

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 2�40
B � 200, Li � 50�150
B � 200, Li � 20
B � 200, Li � 40

B � 8
B � 8
B � 8
B � 8
B � 8

(c) T : no bit errors, % � 24, C � 8

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

C � 8, Li � 40
C � 8, Li � 40
C � 8, Li � 2�40
C � 8, Li � 2�40

(d) T : no bit errors, % � 12, B � 200

� Figure 5.11: Plain Type III runtime

important aspect on this matter is the actual distribution of the Li. If leafs have
high values of Li, runtime is severely affected, as leafs are assigned just one slot. In
contrast, inner nodes have more slots at their disposal, so that a large Li has less
influence. This explains why Li � 50�150 has better per-packet runtime performance
than Li � 2�40. In the first case, the probability of a leaf node being assigned the
upper limit is less than in the second case. Hence, if dividing by the overall network
load, the expectancy of the runtime per packet for Li � 2�40 is higher. In conclusion,
Type III does not perform well in the presence of variable fill levels.

The influence of packet loss is depicted in Figure 5.11(b). As expected in the
analysis in Section 3.2.6 on page 35, it is comparably high. In the case of unlimited
buffers, Li � 40, and N � 900, runtime is prolonged by almost 23%. For N � 300,
where the buffer size is just sufficient, runtime is still lifted by more than 19%. Yet,
the impact of packet loss is less severe for variable initial fill levels. Here, some nodes
usually waste slots in the last rounds, and those slots can be used to send delayed

90

5.2 Detailed Simulation Results

packets, where the delay is caused by packet loss.

Since average node depths decreases in dense networks, runtime improves. More-
over, for equal N the effect of buffer limitation is alleviated, as less slots are generated.
The corresponding plots are depicted in Figure 5.11(c). The minimum-tree and grid
experiments support these results. They additionally imply that runtime depends on
the position of the sink. The center of the network is the favorable position, since
tree and node depth are minimized then.

With C � 8 runtime is increased by more than 20% for some simulations of large
networks with % � 24. However, small networks with density % � 12 show almost no
sensitivity to the choice of C, as is outlined by Figure 5.11(d). This is relevant, as
Type III has its strengths in small networks, since buffer limitations do not pose a
threat on runtime here.

The simulation results generally confirm the theoretical analysis. As expected, the
ascending variant achieves lower runtime than the descending one. Type III is fast
in small and medium networks, but severely suffers from limited buffers in large
networks. This is even more dramatic for the load-aware variant, which is applicable
only in small networks. Here, it performs well for variable loads. The buffering problem
depends on % and C, as these two parameters influence the average node depth. A
smaller value for the latter is desirable. Furthermore, runtime of Type III is elevated
by packet loss.

5.2.6 SPR

SPR reuses slots an paths, so that intra-path collisions are possible. Figure 5.12(a)
shows the percentile of collision-afflicted links by network size for κ � 4 and κ � 5.
The number of links suffering from collisions depends on the density and partly on C,
which is not depicted. If C ! %, nodes on a single path will be closer together, so
that interference occurs for small values of κ. Hence, κ must be chosen carefully in
context of network density and C. However, this problem occurs close at the sink
exclusively (cf. Section 2.2.2). The plot infers that κ � 4 produces a considerable
amount of collisions, whereas κ � 5 is capable of generating collision-free schedules
in dense networks. The yield depicted in Figure 5.12(b) is high in comparison with
3-hop CCH, which can be explained as follows. Nodes close to the sink have many
slots at their disposal, which belong to different paths. A node close to the sink and its
subtree may only get disconnected from the network, if consecutive slots, and thus

91

5 Simulation and Evaluation

0

5

10

15

20

100 300 500 700 900

co
ll
is
io
n
-a
�
ic
te
d
li
n
ks

[%
]

number of nodes

κ � 4, % � 6
κ � 4, % � 9
κ � 4, % � 12
κ � 4, % � 18
κ � 4, % � 24

κ � 5
κ � 5
κ � 5
κ � 5
κ � 5

(a) collisions

0

20

40

60

80

100

100 300 500 700 900

yi
el

d
[%

]

number of nodes

κ � 4, % � 6
κ � 4, % � 9
κ � 4, % � 12
κ � 4, % � 18
κ � 4, % � 24

κ � 5
κ � 5
κ � 5
κ � 5
κ � 5

(b) yield

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

Li � 40, κ � 4
Li � 40, κ � 5
Li � 40, κ � 6

(c) runtime for % � 12

0

1

2

3

4

100 500 900 100 500 900 100 500 900

re
u
se

fa
ct
or

[u
se
d
sl
ot
s
/
ro
u
n
d
le
n
gt
h
]

number of nodes

% � 24
% � 12
% � 6

κ � 6κ � 5κ � 4

(d) reuse factor

� Figure 5.12: SPR, influence of κ for C � 8, B � 200, and no bit errors

paths, of that node are suffering from collisions. Hence, the disconnection of large
subtrees is less likely in comparison with Type I.

Further investigation of the simulation results reveals, that for SPR κ � 5 and κ � 6

no interrupted links are observed for densities % ¥ 12. For % � 6, SPR κ � 6 is still
able to collect all data from the network in more than 75% of all simulation runs.
Hence, a runtime analysis based on all successful simulation runs is possible and
legitimate. Note that it is not surprising, that sparse networks increase the likelihood
of collision, as voids can be more frequently observed. This has been discussed in
Section 3.3.1 on page 38 and also in Section 5.2.3 on page 83.

The influence of κ on runtime is displayed in Figure 5.12(c). The differences are
correlated with the slot reuse factor in Figure 5.12(d). For N � 100 and % � 12,
no slots are reused, so that the overall number of slots is the same. Hence, runtime
is equal, too. For the other network sizes, runtime is inversely proportional to the

92

5.2 Detailed Simulation Results

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 20
B � 200, Li � 2�40
B � 200, Li � 40
B � 200, Li � 50�150

B � 8
B � 8
B � 8
B � 8
B � 8

(a) T : no bit errors, % � 12

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 20
B � 200, Li � 2�40
B � 200, Li � 40
B � 200, Li � 50�150

B � 8
B � 8
B � 8
B � 8
B � 8

(b) T : bit errors, % � 12

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

B � 200, Li � 2
B � 200, Li � 20
B � 200, Li � 2�40
B � 200, Li � 40
B � 200, Li � 50�150

(c) T : no bit errors, % � 24

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke

t]

number of nodes

C � 8, Li � 40
C � 8, Li � 40
C � 8, Li � 2� 40
C � 8, Li � 2� 40

(d) T : no bit errors, % � 12

� Figure 5.13: SPR runtime, C � 8

reuse factor. Note that the same observation is true for the overall number slots (cf.
Section 5.2.2). While high slot reuse may lead to collisions (in sparse networks), it
is an indicator for low runtime, as slots are spatially reused, which already supports
Equation 3.20 on page 43.

Runtime of SPR κ � 6 is shown in Figure5.13(a). It is not influenced by buffer
limitation, as discussed in Section 3.3.1 on page 38. In fact, buffer overflows have
not been observed. Moreover, SPR gives good results for varying buffer fill levels.
However, the per-packet runtime is higher for variable loads, but just slightly for
Li � 50�150. The same explanation as given for Type III on that matter is valid here.
As indicated by the slot reuse statistic, (per-packet) runtime stays almost constant
in large networks. The same results are provided by the minimum-tree experiment.
This proves the limiting effect of κ (cf. Equation 3.20).
The effect of bit errors, shown in Figure 5.13(b), is notably low. This is a striking

advantage over Type III. The comparably high impact for Li � 2 is caused by the

93

5 Simulation and Evaluation

small number of packets. Here, a single lost packet has higher influence on runtime.
Figure 5.13(c) shows that SPR becomes faster in dense networks, which is due to

the decreased average node depth. Note that at the same time, SPR produces a higher
amount of slots. This does not appear to have a negative effect on runtime. Because
slots are scarcely reused for % � 24, per-packet runtime increases with growing N .
For larger networks, this increase can be expected to almost vanish.
Runtime in small networks, see Figure 5.13(d), is well above the possible minimum

as given by the average node depth. This is caused by the fact, that slots are not
spatially reused in these networks, so that the advantage of SPR over Type II and
Type III does not come into operation. In addition, this implies that many slots are
wasted, if nodes with high depth have sent all packets of their subtree, but nodes close
to the sink still have to forward data. Although slots are wasted in large networks,
too, if most nodes have completed forwarding all data, its influence is comparably
low due to the huge amount of packets. Finally, it shows that limiting C does not
impair runtime.
The simulations for the grid topology and varying sink positions show that SPR

produces the fastest schedules, if the sink is placed on the edge. Here, SPR profits
especially from frequent slot reuse, because the tree has high depth. Runtime with
a centered sink is still high due to the balanced tree. Intermediate positions lead to
an increased runtime, if the tree is heavily unbalanced. The explanation of this is
according to the preceding paragraph: slots are numerously wasted at the end of the
collection phase.
In conclusion, SPR generally fulfills the expectations and design goals presented in

Section 3.3. It is fast for variable buffer fill levels and robust against packet loss. Buffer
utilization is as low as expected, which is an important key feature in data-gathering.
The grid experiment reveals that SPR performs particularly well, compared to the
other schedules, if the sink is placed at the edge of even small sized networks. Yet,
there are two drawbacks. SPR is relatively slow in small networks with a centered
sink, and κ must be chosen appropriately with regard to network density in order
to avoid collisions. However, κ � 6 has been shown to give collision-free schedules in
networks with 9 ¤ % ¤ 24.

5.3 Comparison

After the detailed runtime discussion of the different TDMA schedules, a concluding
comparison is provided. Besides runtime, energy-efficiency is particularly addressed,

94

5.3 Comparison

as suggested in Section 3.4.1. CCH 3-hop and SPR κ � 4 are not considered, as their
collision affliction precludes comparing them. To provide a meaningful comparison,
limited buffers (B � 200) and children (C � 8) are assumed. Furthermore, only
high values of Li are of interest here, as they reflect the actual situation found in a
collection phase.

5.3.1 Runtime

Per-packet runtime of the different scheduling schemes is depicted and compared in
Figure 5.14. In addition to the runtime of the different schedules, all plots show the
minimum runtime as found in Equation 5.1. Note that this minimum is equivalent to
the ideal runtime of Type III.

For low density and equal buffer fill levels, as seen in Figure 5.14(a), plain Type III
performs best up to a network size of 300 nodes. Note that the load-aware variant
cannot improve runtime here. As indicated by a look at the average node depth,
Type III starts suffering from buffer congestion for N � 300, so that at this point,
it loses its leading position. CCH γ � 1.9 and SPR (κ � 5) start profiting from the
spatial reuse of slots for N � 500 and larger networks. However, even SPR with κ � 6

is likely to produce collision-afflicted schedules in these sparse networks, so that its
application will require additional effort, e.g., adapting κ, if collisions occur. The
problem of CCH γ�1.9 is that it cannot be implemented distributedly, if at all. The
k-hop variant of CCH is unusable, as it is generally incapable of producing collision-
free schedules. Finally, Type II is suboptimal, too. It has a high runtime compared to
the average node depth, which is caused by the fact that nodes have few children and
that slots are not reused by nodes with a high depth in the tree. This is caused by the
employed reuse strategy. Furthermore, slot storage cannot be performed by Type II
in large networks (cf. Section 3.2.3). As a result, more investigation is required for
this kind of network.

If network density is increased to % � 24, the performance of CCH γ � 1.9 is de-
clining rapidly (Figure 5.14(b)), because round length increases. Besides, Type I is
inapplicable in dense networks, because storing and managing neighborhood infor-
mation, based on hops or inference, is infeasible. In contrast, SPR profits in dense
networks. As seen for the sparse networks, there is a crossover network size from which
on SPR becomes faster than Type III. However, SPR is not able to achieve the mini-
mum runtime: average node depth is below κ, so that slots are rarely reused. Hence,
Type III could theoretically beat SPR for a larger B even in large, dense networks.

95

5 Simulation and Evaluation

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III

SPR, κ � 5
SPR, κ � 6
avg. node depth

(a) Li � 40, % � 6

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III

SPR, κ � 5
SPR, κ � 6
avg. node depth

(b) Li � 40, % � 24

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10

SPR, κ � 5
SPR, κ � 6
avg. node depth

(c) Li � 40, % � 12

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10

SPR, κ � 5
SPR, κ � 6
avg. node depth

(d) Li � 40, % � 12

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90

ru
nt
im

e
[s
lo
ts

/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10

SPR, κ � 5
SPR, κ � 6
avg. node depth

(e) Li � 50�150, % � 12

0

5

10

15

20

25

30

100 300 500 700 900

ru
nt
im

e
[s
lo
ts

/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10

SPR, κ � 5
SPR, κ � 6
avg. node depth

(f) Li � 50�150, % � 12

� Figure 5.14: Runtime comparison for C � 8, B � 200, no bit errors

96

5.3 Comparison

However, as soon as packet loss occurs, runtime of Type III is considerably affected,
so that SPR may be considered the best choice. Again, Type II cannot compete, as
buffer congestion delays slot reuse.

Figures 5.14(c) and 5.14(d) compare runtime for % � 12. Here, CCH γ � 1.9 is
left behind by its opponents, as slots are rarely reused in small networks. Type III
generates the fastest schedules, but as it assigns too many slots (as compared to buffer
size) to nodes close to the sink, it cannot maintain performance in large networks.
Type II may be considered an alternative in small networks, if initial fill levels of
nodes are moderate, and if massive packet loss is observed. Given moderate fill levels,
runtime of Type II has been shown to increase relative to Type III. If packet loss is
observed, runtime of Type III is severely elevated, whereas Type II is less affected. In
combination, runtime comes to a tie. Note that this is valid in small networks only,
as slot storage of Type II does not pose a problem for the restricted amount of a
node’s memory here. In large networks, SPR is perfectly suited, as it outperforms all
other schedules, even in the case of bit errors. Moreover, Figure 5.14(d) indicates that
relative runtime of SPR cannot be competed with in even larger networks, because it
approaches—and will eventually get below—the theoretical no-slot-reuse optimum.

Due to packet loss and interrupted links, buffer fill levels of individual nodes are
not likely to be equally distributed at the beginning of a collection phase. Moreover,
initial buffer fill levels can be expected to be high, possibly close to the soft limit B̃.
Figures 5.14(e) and 5.14(f) show the standings of the discussed schemes for this case.
As explained in Section 5.2.3, the performance of CCH γ�1.9 is not influenced by the
initial fill levels. Yet, it is not the fastest solution. Although Type II is generally load-
adaptive, it is severely affected by the high load and hereby caused buffer congestion,
since slot reuse is heavily delayed. Hence, Type II is not an option in this situation,
either. Load-aware Type III shows best performance in very small networks, but
huge buffers are required to make it applicable in medium sized networks. Adoption
in large networks is impossible with current memory limitations of wireless sensor
nodes. Plain Type III is slower than its load-aware variant in very small networks,
yet is later affected by limited buffers. As discussed in Section 5.2.5, it is slightly
slower than in the situation of uniform buffer fill levels. SPR exhibits low runtime for
all network sizes and considerably undercuts runtime of Type III in large networks.
If high packet loss is observed, and if buffers are small, SPR may be considered an
alternative for Type III even in small networks.

97

5 Simulation and Evaluation

5.3.2 Energy-Efficiency

Plain discussion of runtime has revealed the advantages of Type III and SPR. Con-
cerning runtime only, the former can generally be considered as the first choice in
small networks, and the latter outperforms its opponents in large networks. Yet, net-
work lifetime is crucial, so that energy-efficiency must be considered, too. Figure 5.15
depicts the overall energy-consumption of all nodes per created packet. Precisely, the
cumulative time spent outside the sleep mode is shown. Assuming equal power re-
quired for sending, receiving, and listening—a justifiable assumption as mentioned in
Section 2.1.1 on page 7—this value is proportional to the actual amount of energy
consumed.
Most of the graphs show similar behavior and clearly evince a close relation to av-

erage node depth, which is proportional to the minimum energy to collect all packets.
The corresponding minimum time spent outside the sleep mode can be obtained by
multiplying average node depth with twice the time—it must be counted for both
communication partners—elapsing from the beginning of a slot until completed re-
ception of the acknowledgment. The packet lengths and slot timings as presented in
Section 5.1.1 are used for this calculation. The resulting curve is also visualized in
the plots to give a better impression of communication overhead and actual energy-
efficiency of the different scheduling schemes. An immediate outcome of this is the
justification of the observation that energy consumption is affected by network den-
sity. This can be followed by comparing the sequence of Figures 5.15(a), 5.15(d),
and 5.15(b).
Particularly in large networks, CCH γ � 1.9 causes high energy consumption, or

wastage. It grows with increasing initial buffer fill levels. In conclusion, energy con-
sumption for Type I rises with overall network load. This is caused by buffer overflows
that cannot be prevented by the flow control. It is possible to considerably alleviate
this problem by applying a more suitable flow control scheme. Currently, buffer con-
gestion is avoided by calculating the difference between the current buffer fill level
and the soft limit. This does not take into consideration, whether a node will be able
to forward any packets to its parent in the near future.
The energy consumption of Type II is above the possible minimum, but not as much

as Type I. A small fraction is caused by sending slots up in the tree. However, it is
comparably low. The main source of energy wastage is caused by buffer overflows.
Although reusing slots leads to fewer buffer overflows as compared to Type I, its
effect is aggravated by a high network load. The initial load of each node influences
the reuse delay, as explained in Section 5.2.4. For this reason, the results in 5.15(f)

98

5.3 Comparison

0

250

500

750

1000

1250

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
SPR, κ � 5
SPR, κ � 6
Minimum

(a) Li � 40, % � 6

0

250

500

750

1000

1250

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
SPR, κ � 5
SPR, κ � 6
Minimum

(b) Li � 40, % � 24

0

250

500

750

1000

1250

20 30 40 50 60 70 80 90

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6
Minimum

(c) Li � 40, % � 12

0

250

500

750

1000

1250

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6
Minimum

(d) Li � 40, % � 12

0

250

500

750

1000

1250

20 30 40 50 60 70 80 90

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6
Minimum

(e) Li � 50�150, % � 12

0

250

500

750

1000

1250

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6
Minimum

(f) Li � 50�150, % � 12

� Figure 5.15: Overall energy consumption for C � 8, B � 200, and no bit errors

99

5 Simulation and Evaluation

exhibit a worse energy-efficiency of Type II than those in 5.15(d). Type II lends
itself as a suitable solution concerning energy-consumption in small networks, e.g.,
see Figure 5.15(c), because it performs close to the minimum and does not require
explicit slot assignment and thus no additional communication overhead.

The flow control in use produces very few buffer overflows for plain Type III.
Precisely, their may be at most one dropped packet on each link in every round.
Because this is small as compared to round length, energy consumption of plain
Type III is very low. Particularly in large networks, e.g., as shown in Figure 5.15(d).
This proves the energy-efficiency of Type III. Load-aware Type III is not as energy-
efficient as the plain variant in large networks and with varying node fill levels, as
depicted in Figure 5.15(f). Here, many slots cannot be used, particularly at the end of
a data collection phase. This provokes the sending of keepalives. Note that for λ � 10,
values for N � 900 are not available (cf. Section 5.1.2). Indeed, flow control could
be improved by attaching the number of slots to skip ωp to the last data packet, if
a child cannot use the remainder of its slots in the same round. This promises to be
a large improvement, providing load-aware Type III with the energy-efficiency of the
plain variant.

SPR is as energy-efficient as Type III. The applied flow control causes few keepalive
packets only. The heuristic for skipping slots in case of buffer underrun thus shows
to be suitable, so that the amount of energy consumed is not influenced by κ. This is
true for all investigated network sizes and densities as well as for different and equal
buffer fill levels. Furthermore, Type III and SPR have the same low overhead for slot
assignment, so that overall energy-efficiency can be attested.

As stated in Section 3.4.1, the maximum energy consumed by a single node is
also an important metric. The corresponding data is presented in Figure 5.16 and
is again expressed as the time spent outside the sleep mode. The sink is not taken
into consideration here, because it is usually equipped with unlimited or high energy
resources. Maximum energy consumption is related to network density, because the
latter influences the number of children at the sink. Since these nodes are exposed
to the highest load in the network—they have to forward all data of their subtree–,
their energy consumption is the highest in the network and is hence depicted in the
corresponding plots. They reflect the behavior of the just described overall energy
consumption. For Type I, energy consumption is the highest due to massive buffer
overflows. Type II suffers less from this problem and the influence of sending slots up
in the tree is comparably low. Type III and SPR are approximately at the same low
level.

100

5.3 Comparison

0

10

20

30

40

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
SPR, κ � 5
SPR, κ � 6

(a) Li � 40, % � 6

0

10

20

30

40

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
SPR, κ � 5
SPR, κ � 6

(b) Li � 40, % � 24

0

10

20

30

40

20 30 40 50 60 70 80 90

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6

(c) Li � 40, % � 12

0

10

20

30

40

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6

(d) Li � 40, % � 12

0

10

20

30

40

20 30 40 50 60 70 80 90

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6

(e) Li � 50�150, % � 12

0

10

20

30

40

100 300 500 700 900

en
er
gy

co
n
su
m
p
ti
on

[m
s
/
p
ac
ke
t]

number of nodes

CCH γ � 1.9
Type II
Type III
Type III, λ � 10
SPR, κ � 5
SPR, κ � 6

(f) Li � 50�150, % � 12

� Figure 5.16: Maximum per-node energy consumption for C � 8, B � 200, and
no bit errors

101

5 Simulation and Evaluation

5.3.3 Summary

As a conclusion, the key findings of the presented analysis and comparison are sum-
marized in the following. They are enriched with the outcome of Chapter 3. Table 5.3
can be used as a decision guidance for the choice of the most appropriate scheduling
scheme for a given scenario.
Breadth-first search produces suitable data-gathering trees, in which the limitation

of C does not have a large influence on tree depth and individual node depth. Only
close to the sink and in dense networks, a limited C becomes noticeable, so that
average subtree size is slightly increased. Finally, the number of leafs increases with
network density.
Unlike frequently stated in the literature, Type I does not reveal itself as par-

ticularly suitable for data-gathering. In contrast, it consumes more energy than
its competitors and thus demands for an advanced flow control. Furthermore, k-
hop approaches are not capable of producing collision-free schedules and the used
CCH γ � 1.9 approach cannot be implemented distributedly. Hence, arguing that
runtime of Type I is below its opportunities due to the larger number of slots created
by CCH γ � 1.9 is bootless. Although interference-based solutions for Type I exist,
they are difficult to implement and presumably sensitive to signal power deviation
and overlapping. Besides, exchange of neighborhood information may not be possible
in sparse networks. This is true, because these networks contain many voids that
prevent exchanging data within a limited number of hops. In contrast, neighborhood
storage and management is not viable in dense networks due to limited memory.
Type II can only be used in small networks, because the limited amount of mem-

ory resources is in contradiction to the demands of this scheduling scheme for large
networks. It has been shown that the ordering of slots does not have a significant
impact on runtime, so that nodes could simply use their unique identifiers in order
to determine their sending slots. Having calculated the routing tree, sending slots of
a node’s children are also known. As sending slots up in the tree for reuse does not
cause high overhead, Type II can be successfully applied in small networks. However,
runtime does not achieve the possible minimum and the influence of packet loss and
buffer overflows must not be underestimated.
Best performance in small networks is achieved by Type III with ascendingly or-

dered slots. The load-aware variant is capable of getting close to the optimum, even if
initial buffer fill levels vary among nodes. Type III is slightly affected by the position
of the sink, where the center is the best position. Yet, more severe drawbacks have
been identified. Firstly, packet loss is likely to elevate runtime. Secondly, Type III

102

5.3 Comparison

produces a huge number of slots, which is particularly grave for the load-aware vari-
ant with a small λ. As soon as the number of slots assigned to a single node exceeds
its buffer size, slots are wasted and runtime is dramatically increased. As each node
in the network is assigned a set of consecutive slots with the size of its subtree, buffer
size has to be in the order of N as a worst case estimate. Due to the limited amount
of memory and computing power, an appropriate buffer management is not feasible
in large networks. This is particularly true, if the Li vary considerably among nodes,
which requires a small λ to achieve low runtime at the cost of a huge number of slots
generated.

The newly introduced SPR scheduling scheme has revealed itself as being highly
energy-efficient in all kinds of networks. Slot assignment comes at a small overhead
and slot storage does only depend on a node’s number of children and κ. Low runtime
is achieved especially in large networks, which is accomplished by spatially reusing
slots on paths from leafs to the sink. In particular, SPR is able to outperform all other
approaches at a given network size depending on the density. Unlike Type III, SPR
guarantees low buffer utilization and is hardly influenced by packet loss. Further-
more, SPR performs well for high network load and varying buffer fill levels among
nodes. However, application in sparse networks is difficult due to collisions, but not
impossible.

103

5 Simulation and Evaluation

T
ype

I
T
ype

II,enhanced
T
ype

III,plain
T
ype

III,load
aw

are
SP

R

N
etw

ork
S
ize

N

Sm
all

a
a

`
`
`

`
`

a

M
edium

l
l

`
l

l

Large
a

a
a

a
a

a
a

`
`

D
en

sity
%

Low
a
a

l
a

a
a

a

M
edium

l
l

l
l

`

H
igh

a
a

l
`

l
`

In
itial

F
ill

L
evel

L
i

Low
l

`
`
`

`
`

`

H
igh

a
a

a
a

a
a

`
`

V
ariation

of
In
itial

F
ill

L
evels

L
i

Low
`
`

`
a

`
`
`

H
igh

`
`

a
a
a

`
`
`

C
ollision

s
an

d
P
acket

L
oss

C
ollisions

/
Y
ield

3
/
a
a

–/
`
`

–/
`
`

–/
`
`

3
/
l

P
acket

Loss
`

l
a
a

a
a

`

S
in
k
P
osition

C
enter

`
`

`
`

`
`

`

E
dge

a
a

l
a

a
a

`
`

A
rbitrary

a
l

l
l

a

L
im

itation
s

Lim
ited

C
hildren

C
a

`
`

`
`

`
`

Lim
ited

B
uffer

B
l

l
a

a
a

`
`

A
dditionalR

equirem
ents

E
xt.F

low
C
ontrol

E
xt.F

low
C
ontrol

B
¥

m
ax

i L
i
�
|T

i |
B
¥

m
ax

i L
i �

rL
�i
{λ

s
5
¤
κ

m
ax

i
d
0

,i

R
c
o

m

�
T
ab

le
5.3:

C
haracteristics

of
the

T
D
M
A

schedules:D
ecision

G
uidance

104

Chapter6
Conclusion and Outlook

In recent years, wireless sensor networks have been frequently adopted for data-
gathering, as they facilitate the collection and permit the generation of high resolution
data. Due to limited resources, energy-efficiency is mandatory to prolong network life-
time, which particularly implies an effective operation of the radio transceiver. Em-
ploying dedicated data-collection phases in combination with Time-Division-Multiple
Access (TDMA) for scheduled transmission offers to meet this end. A variety of sched-
ules exists, but all of them exhibit weaknesses. Moreover, a detailed comparison be-
tween the distinct types of schedules is not available. Therefore, it is neither known,
which one to prefer in a given data-gathering scenario, nor if they are appropriate
at all. In order to overcome this deficiency, the objectives of this thesis have been
to investigate the existing approaches theoretically, to derive an advanced schedul-
ing scheme from the results, and to accomplish a detailed comparison under realistic
conditions via simulation.

These objectives have been achieved as follows. An analytical investigation of the
existing schedules has been carried out, being the first to permit a detailed compari-
son. It provides an elaborate runtime analysis and reveals susceptible weaknesses. In
particular, all schedules provoke buffer congestion, which is likely to affect runtime
and energy-efficiency. Furthermore, packet loss poses a severe runtime threat on some
of the schedules. Based on the results of this analysis, the new Spatial Path-Based
Reuse (SPR) scheme has been devised. Its main advantages are low runtime in various
scenarios, high energy-efficiency, and an outstanding low buffer utilization. Further-
more, SPR generates schedules with low overhead and a small memory footprint,
while its distributed implementation is frugal. Although the analytical investigation
provides a deeper insight and understanding of the schedules, a simulative compar-

105

6 Conclusion and Outlook

ison of the existing approaches and SPR is needed to validate its outcome and to
address open issues. Therefore, a highly flexible and extensible simulation framework
has been designed and implemented using the ns-2 network simulator. Finally, exten-
sive simulations consisting of more than 400,000 individual runs have been conducted.
The obtained results enable a detailed investigation of the different approaches and
underline their strengths and weaknesses in diverse data-gathering scenarios.

The simulation results substantiate that TDMA generally permits low runtime
and energy-efficiency close to the possible minimum. Unlike frequently stated in the
literature, Type I schedules that minimize the round length perform poorly. The
generated schedules suffer severely from collisions and lead to an unacceptable yield,
rendering runtime comparison infeasible. To make a comparison possible anyhow, a
revised Type I variant has been implemented. It guarantees collision-free schedules
by making use of the interference radius. As the latter is usually not available, this
approach cannot be implemented distributedly, if at all. Although the round length
of the according schedules is still small, the achieved runtime is high and energy-
efficiency unsatisfactory, which is caused by heavy buffer congestion. In conclusion,
Type I has failed to prove premature expectancies stated elsewhere, and is currently
unusable for data-gathering.

Even though Type II is a trivial approach, it offers better runtime performance
particularly in small networks. Yet, it cannot be used in large networks due to the
high memory consumption for slot storage. Furthermore, Type II can achieve low
runtime solely in the case of low network load. Yet, as it is independent of any
slot ordering, nodes can use their unique identifiers to determine their slots, so that
no overhead is produced for slot assignment. This may lead to high overall energy-
efficiency in small networks with low load and without the demand for low runtime.
If the opposite is the case, Type III is favorable. It achieves the best runtime in small
networks with energy-efficiency close to the possible minimum, if buffer fill levels are
equal. Yet, increasing network size causes a larger amount of slots assigned to nodes
close to the sink. At some point, the number of slots exceeds the buffer size of some
nodes. This is fatal, as slots are assigned consecutively, so that some slots are wasted
and runtime is therefore dramatically elevated. If nodes have different initial buffer
fill levels, the load-aware variant of Type III is preferable. Yet, it even intensifies the
buffering problem and is thus applicable solely in very small networks.

The newly developed SPR slot assignment produces collision-afflicted schedules
almost exclusively in sparse networks, which is caused by paths bending around voids.
This partial shortcoming can be overcome with low overhead, but requires further

106

investigation. With increasing density, collisions vanish and SPR achieves the lowest
runtime of all schedules in large networks. It is potentially able to undercut the
theoretical optimum of Type III, since slots are spatially reused. SPR is the only
scheme that does not cause buffer overflows, so that low runtime is preserved even
in the case of small buffers. Moreover, it achieves high energy-efficiency close to the
possible minimum. In combination with its low assignment overhead and sophisticated
slot storage, SPR confirms its high adequacy for data-gathering.

As a result of the large amount of simulations and obtained results, a variety of
issues has been identified for further investigation. The first topic regards network
density. A deeper and finer grained analysis on this matter is required to provide a
more precise comparison of Type III and SPR. In this context, locally varying den-
sities should also be investigated. As all schemes perform poorly in sparse networks,
more research is demanded here. In particular, a strategy for avoiding collisions or
repairing collision-afflicted schedules produced by SPR is promising, because runtime
of Type III cannot be increased in these networks. Moreover, large networks with
more than 1,000 nodes have not been considered so far. Even though SPR promises
preeminent runtime, it is not known when and under which conditions it is able to ac-
tually undercut the ideal performance of Type III. In small networks, the performance
of Type II may not have been at its optimum, because only one reuse strategy has
been considered. This points out the relevance to develop and test new strategies. In
addition, devising and implementing an advanced flow control will boost runtime and
energy-efficiency of Type II and presumably of Type III. Further optimizing energy
consumption of SPR is possible by improving the slot-skipping mechanism.

For the comparison performed in this thesis, a two-phase data-collection strat-
egy has been employed. This solution disencumbers from continuous tree mainte-
nance, which is required by its periodical, on-demand counterpart. As tree main-
tenance implies additional wireless communication, the two-phase strategy promises
higher energy-efficiency. One direction of research would be to analyze overall energy-
consumption of both strategies in order to examine carefully, if and when this holds.
Another one would be to compare the different types of TDMA schedules in an
on-demand scenario, since the two-phase strategy is possible exclusively in the case
of delay-tolerant data. Note that the enhanced Type II scheme can solely be em-
ployed as part of a two-phase strategy due to slot reuse. Furthermore, the influence
of multiple sinks is an important area of research for data-gathering, since recent ap-
plications pose an according demand, where multiple sensors and actors, i.e., sinks,
are employed. Besides, multiple sinks decrease the high load and therefore energy

107

6 Conclusion and Outlook

consumption of nodes close to the sink, which is a severe threat to network lifetime
especially in large networks. Finally, the applicability of TDMA in general and the
discussed schemes in particular is an completely open issue in networks with limited
or partial mobility.

108

Bibliography

[AHM�06] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and F. Cuomo. Funneling-
MAC: A Localized, Sink-Oriented MAC for Boosting Fidelity in Sensor Net-
works. In Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys ’06), Boulder, CO, USA, October 2006.

[ASD�06] M. Ali, U. Saif, A. Dunkels, T. Voigt, K. Römer, K. Langendoen, J. Polastre,
and Z. A. Uzmi. Medium Access Control Issues in Sensor Networks. ACM
Computer Communication Revue, 36(2), 2006.

[AY06] T. R. Andel and A. Yasinac. On the Credibility of Manet Simulations. IEEE
Computer Magazine, 39(7), 2006.

[BBLV05] G. Barrenetxea, B. Beferull-Lozano, and M. Vetterli. Efficient Routing with
Small Buffers in Dense Networks. In Proceedings of the 4th International Sym-
posium on Information Processing in Sensor Networks (IPSN ’05), Los Ange-
les, CA, USA, April 2005.

[BGLA01] L. Bao and J. J. Garcia-Luna-Aceves. A New Approach to Channel Access
Scheduling for Ad Hoc Networks. In Proceedings of the 7th International Con-
ference on Mobile Computing and Networking (MobiCom ’01), Rome, Italy,
July 2001.

[BR04] P. Basu and J. Redi. Effect of Overhearing Transmissions on Energy Efficiency
in Dense Sensor Networks. In Proceedings of the Third International Sympo-
sium on Information Processing in Sensor Networks (IPSN ’04), Berkeley, CA,
USA, April 2004.

[BRD�07] K. L. Bryan, T. Ren, L. DiPippo, T. Henry, and V. Fay-Wolfe. Towards Opti-
mal TDMA Frame Size in Wireless Sensor Networks. Technical report, Depart-
ment of Computer Science and Statistics, University of Rhode Island, Kingston,
RI, USA, March 2007.

[BvRW07] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: Ultra-Low Power
Data Gathering in Sensor Networks. In Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (IPSN ’07), Cam-
bridge, MA, USA, April 2007.

109

Bibliography

[CMGL05] S. Cui, R. Madan, A. Goldsmith, and S. Lall. Energy-Delay Tradeoffs for
Data Collection in TDMA-Based Sensor Networks. In Proceedings of the 40th
International Conference on Communications (ICC ’05), Seoul, Korea, May
2005.

[CO05] R. Cardell-Oliver. ROPE: A Reactive, Opportunistic Protocol for Environ-
ment Monitoring Sensor Networks. In Proceedings of the Second Workshop on
Embedded Networked Sensors (EmNetS ’05), Sydney, Australia, May 2005.

[DEA06] I. Demirkol, C. Ersoy, and F. Alagoz. MAC Protocols for Wireless Sensor
Networks: A Survey. IEEE Communications Magazine, 44(4), 2006.

[DG07] A. Dhamdhere and J. Grönkvist. Joint Node and Link Assignment in an
STDMA Network. In Proceedings of the 65th Vehicular Technology Conference
(VTC ’07), Dublin, Ireland, April 2007.

[DH03] H. Dai and R. Han. A Node-Centric Load Balancing Algorithm for Wireless
Sensor Networks. In Proceedings of the 46th Global Communications Confer-
ence (Globecom ’03), San Francisco, CA, USA, December 2003.

[DML03] E. J. Duarte-Melo and M. Liu. Data-Gathering Wireless Sensor Networks:
Organization and Capacity. Computer Networks, 43, 2003.

[EB04] C.-T. Ee and R. Bajcsy. Congestion Control and Fairness for Many-to-One
Routing in Sensor Networks. In Proceedings of the Second International Con-
ference on Embedded Networked Sensor Systems (SenSys ’04), Baltimore, MD,
USA, November 2004.

[ECPS02] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the Physical
World with Pervasive Networks. IEEE Pervasive Computing, 1(1), 2002.

[EV05] S. Coleri Ergen and P. Varaiya. TDMA Scheduling Algorithms for Sensor Net-
works. Technical report, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA, USA, July 2005.

[FV08] K. Fall and K. Varadhan. The ns Manual. http://www.isi.edu/nsnam/ns/ns-
documentation.html, January 2008. Last visited: 05/06/2008.

[GDP05] S. Gandham, M. Dawande, and R. Prakash. Link Scheduling in Sensor
Networks: Distributed Edge Coloring Revisited. In Proceedings of the 24th
Joint Conference of the IEEE Computer and Communications Societies (Info-
com ’05), Miami, FL, USA, March 2005.

[Grö04] J. Grönkvist. Comparison Between Scheduling Models for Spatial Reuse
TDMA. In Proceedings of the Second Workshop on Affordable Wireless Services
and Infrastructure (AWSI ’04), Stockholm, Sweden, June 2004.

[Grö06] J. Grönkvist. Novel Assignment Strategies for Spatial Reuse TDMA inWireless
Ad Hoc Networks. Wireless Networks, 12(2), 2006.

[IGE00] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. In Proceedings of

110

Bibliography

the 6th International Conference on Mobile Computing and Networking (Mo-
biCom ’00), Boston, MA, USA, August 2000.

[JE07] J. Jeong and C.-T. Ee. Forward Error Correction in Sensor Networks.
In Proceedings of the International Workshop on Wireless Sensor Networks
(WWSN ’07), Marrakesh, Morocco, June 2007.

[Joe05] I. Joe. Optimal Packet Length with Energy Efficiency for Wireless Sensor
Networks. Kobe, Japan, May 2005.

[KPC�06] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon.
Wireless Sensor Networks for Structural Health Monitoring. In Proceedings
of the 4th International Conference on Embedded Networked Sensor Systems
(SenSys ’06), Boulder, CO, USA, October 2006.

[KS06] K.-H. Kim and K. G. Shin. On Accurate Measurement of Link Quality in
Multi-Hop Wireless Mesh Networks. In Proceedings of the 12th International
Conference on Mobile Computing and Networking (MobiCom ’06), Los Ange-
les, CA, USA, September 2006.

[LDCO06] W. L. Leer, A. Datta, and R. Cardell-Oliver. FlexiMAC: A Flexible TDMA-
Based MAC Protocol for Fault-Tolerant and Energy-Efficient Wireless Sensor
Networks. In Proceedings of the 14th International Conference on Networks
(ICON ’06), Singapore, September 2006.

[Liu] K. Liu. Understanding the Implementation of IEEE MAC 802.11 Standard
in ns-2. http://www.cs.binghamton.edu/�kliu/research/ns2code/index.html.
Last visited: 05/06/2008.

[LKR04] G. Lu, B. Krishnamachari, and C. Raghavendra. An Adaptive Energy-Efficient
and Low-Latency MAC for Data Gathering in Sensor Networks. In Proceedings
of the International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks (WMAN ’04), Santa Fe, NM, USA, April 2004.

[MPR�05] K. Martinez, P. Padhy, A. Riddoch, H. L. R. Ong, and J. K. Hart. Glacial
Environment Monitoring Using Sensor Networks. In Proceedings of the Work-
shop on Real-World Wireless Sensor Networks (REALWSN ’05), Stockholm,
Sweden, June 2005.

[MPS�02] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
Sensor Networks for Habitat Monitoring. In Proceedings of the First Interna-
tional Workshop on Wireless Sensor Networks and Applications (WSNA ’02),
Atlanta, GA, USA, September 2002.

[NGM07] M. Nunes, A. Grilo, and M. Macedo. Interference-Free TDMA Slot Allocation
in Wireless Sensor Networks. In Proceedings of the 32nd Conference on Local
Computer Networks (LCN ’07), Montreal, Canada, October 2007.

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for Wire-
less Sensor Networks. In Proceedings of the Second International Conference
on Embedded Networked Sensor Systems (SenSys ’04), Baltimore, MD, USA,
November 2004.

111

Bibliography

[Ram97] S. Ramanathan. A Unified Framework and Algorithm for (T/F/C)DMA Chan-
nel Assignment in Wireless Networks. In Proceedings of the 16th Conference
on Computer Communications (Infocom ’97), Kobe, Japan, April 1997.

[ROGLA03] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves. Energy-Efficient,
Collision-Free Medium Access Control for Wireless Sensor Networks. In Pro-
ceedings of the First International Conference on Embedded Networked Sensor
Systems (SenSys ’03), Los Angeles, CA, USA, November 2003.

[ROGLA05] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves. Energy-Efficient,
Application-Aware Medium Access for Sensor Networks. In Proceedings of
the Second International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS ’05), Washington D.C., USA, November 2005.

[RR04] F. J. Ros and P. M. Ruiz. Implementing a New Manet Unicast Routing Proto-
col in NS2. Technical report, Department of Information and Communications
Engineering, University of Murcia, Spain, December 2004.

[RR08] K. Römer and C. Renner. Aggregating Sensor Data from Overlapping Multi-
Hop Network Neighborhoods: Push or Pull? In Proceedings of the 5th Inter-
national Conference on Networked Sensing Systems (INNS ’08), Kanazawa,
Japan, June 2008.

[RRDM08] V. Ramamurthi, A. S. Reaz, S. Dixit, and B. Mukherjee. Link Scheduling and
Power Control in Wireless Mesh Networks with Directional Antennas. In Pro-
ceedings of the 43rd International Conference on Communications (ICC ’08),
Bejing, China, May 2008.

[RWAM05] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-MAC: A Hybrid MAC for Wire-
less Sensor Networks. In Proceedings of the Third International Conference
on Embedded Networked Sensor Systems (SenSys ’05), San Diego, CA, USA,
November 2005.

[RWMX06] I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: Distributed Randomized
TDMA Scheduling for Wireless Ad-hoc Networks. In Proceedings of the 7th
International Symposium on Mobile Ad Hoc Networking and Computing (Mo-
biHoc ’06), Florence, Italy, May 2006.

[RXMC05] B. Ren, J. Xiao, J. Ma, and S. Cheng. An Energy-Conserving And Collision-
Free MAC Protocol Based on TDMA for Wireless Sensor Networks. In Proceed-
ings of the International Conference on Mobile Ad-Hoc and Sensor Networks
(MSN ’05), Wuhan, China, December 2005.

[SAA03] Y. Sankarasubramaniam, Ö. B. Akan, and I. F. Akyildiz. ESRT: Event-to-
Sink Reliable Transport in Wireless Sensor Networks. In Proceedings of the
4th International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc ’03), Annapolis, MD, USA, 2003.

[SAM03] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. McLaughlin. Energy Effi-
ciency Based Packet Size Optimization in Wireless Sensor Networks. In Pro-
ceedings of the First International Workshop on Sensor Network Protocols and
Applications (SNPA ’03), Anchorage, AK, USA, May 2003.

112

Bibliography

[SH03] F. Stann and J. Heidemann. RMST: Reliable Data Transport in Sensor Net-
works. In Proceedings of the First International Workshop on Sensor Net Pro-
tocols and Applications (SNPA ’03), Anchorage, AK, USA, May 2003.

[SLR�05] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt. ScatterWeb - Low
Power Sensor Nodes and Energy Aware Routing. In Proceedings of the 38th
Hawaii International Conference on System Sciences (HICSS ’05), Hawaii, HI,
USA, January 2005.

[SPMC04] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a Sen-
sor Network Expedition. In Proceedings of the First European Conference on
Wireless Sensor Networks (EWSN ’04), Berlin, Germany, January 2004.

[SRS90] S. Y. Seidel, T. S. Rappaport, and R. Singh. Path Loss and Multipath De-
lay Statistics in four European Cities for 900 MHz Cellular and Microcellular
Communications. Electronics Letters, 26(20), September 1990.

[SWC�07] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,
W. Kang, J. Stankovic, D. Young, and J. Porter. LUSTER: Wireless Sen-
sor Network for Environmental Research. In Proceedings of the 5th Inter-
national Conference on Embedded Networked Sensor Systems (SenSys ’07),
Sydney, Australia, November 2007.

[SYL06] W.-Z. Song, F. Yuan, and R. LaHusen. Time-Optimum Packet Scheduling for
Many-to-One Routing in Wireless Sensor Networks. In Proceedings of the Third
International Conference on Mobile Adhoc and Sensor Systems (MASS ’06),
Vancouver, Canada, October 2006.

[TRV�05] V. Turau, C. Renner, M. Venzke, S. Waschik, C. Weyer, and M. Witt. The
Heathland Experiment: Results and Experiences. In Proceedings of the Work-
shop on Real-World Wireless Sensor Networks (REALWSN ’05), Stockholm,
Sweden, June 2005.

[TTS05] N. Thepvilojanapong, Y. Tobe, and K. Sezaki. On the Construction of Effi-
cient Data Gathering Tree in Wireless Sensor Networks. In Proceedings of the
International Symposium on Circuits and Systems (ISCAS ’05), Kobe, Japan,
May 2005.

[TW07a] V. Turau and C. Weyer. Long-Term Reliable Data Gathering Using Wire-
less Sensor Networks. In Proceedings of the 4th International Conference on
Networked Sensing Systems (INSS ’07), Braunschweig, Germany, June 2007.

[TW07b] V. Turau and C. Weyer. Scheduling Transmission of Bulk Data in Sensor Net-
works Using a Dynamic TDMA Protocol. In Proceedings of the International
Workshop on Data Intensive Sensor Networks 2007 (DISN ’07), Mannheim,
Germany, May 2007.

[TW07c] V. Turau and C. Weyer. TDMA-Schemes for Tree-Routing in Data Intensive
Wireless Sensor Networks. In Proceedings of the First International Workshop
on Protocols and Algorithms for Reliable and Data Intensive Sensor Networks
(PARIS ’07), Pisa, Italy, October 2007.

113

Bibliography

[TWR08] V. Turau, C. Weyer, and C. Renner. Efficient Slot Assigment for the Many-
to-One Routing Pattern in Sensor Networks. In Proceedings of the Interna-
tional Workshop on Sensor Network Engineering (IWSNE ’08), Santorini Is-
land, Greece, June 2008.

[Unt08] S. Unterschütz. Network Simulator (NS-2), Institute of Telemat-
ics, Hamburg University of Technology, Germany. http://wiki.ti5.tu-
harburg.de/wsn/ns2/intro, 2008. Last visited: 05/06/2008.

[WC01] A. Woo and D. Culler. A Transmission Control Scheme for Media Access in
Sensor Networks. In Proceedings of the 7th International Conference on Mobile
Computing and Networking (MobiCom ’01), Rome, Italy, July 2001.

[WCK02] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A Reliable Trans-
port Protocol for Wireless Sensor Networks. In Proceedings of the First Interna-
tional Workshop on Wireless Sensor Networks and Applications (WSNA ’02),
Atlanta, GA, USA, September 2002.

[WCS�07] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Valencia,
D. Swain, and G. Bishop-Hurley. Transforming Agriculture through Pervasive
Wireless Sensor Networks. IEEE Pervasive Computing, 6(2), 2007.

[WR05] A. Warrier and I. Rhee. Stochastic Analysis of Wireless Sensor Network MAC
Protocols. Technical report, Computer Science Department, North Carolina
State University, Raleigh, NC, USA, August 2005.

[WTC03] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks. In Proceedings of the First International
Conference on Embedded Networked Sensor Systems (SenSys ’03), Los Angeles,
CA, USA, November 2003.

[WWJ�05] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. Exploiting
the Capture Effect for Collision Detection and Recovery. In Proceedings of
the Second Workshop on Embedded Networked Sensors (EmNetS ’05), Sydney,
Australia, May 2005.

[XK04] F. Xue and P. R. Kumar. The Number of Neighbors Needed for Connectivity
of Wireless Networks. Wireless Networks, 10(2), 2004.

[YH04] W. Ye and J. Heidemann. Medium Access Control in Wireless Sensor Networks.
Wireless Sensor Networks, 2004.

[YHE02] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In Proceedings of the 21st Conference on Computer
Communications (Infocom ’02), New York, NY, USA, June 2002.

[YW08] N. B. Shroff Y. Wu, S. Fahmy. On the Construction of a Maximum-Lifetime
Data Gathering Tree in Sensor Networks: NP-Completeness and Approxima-
tion Algorithm. In Proceedings of the 27th Conference on Computer Commu-
nications (Infocom ’08), Phoenix, AZ, USA, April 2008.

114

Bibliography

[ZHSA05] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher. RID: Radio Interference
Detection in Wireless Sensor Networks. In Proceedings of the 24th Joint Con-
ference of the IEEE Computer and Communications Societies (Infocom ’05),
Miami, FL, USA, March 2005.

[ZK03] C. Zhou and B. Krishnamachari. Localized Topology Generation Mechanisms
for Wireless Sensor Networks. In Proceedings of the 46th Global Communica-
tions Conference (Globecom ’03), San Francisco, CA, USA, December 2003.

[ZK04] M. Zúñiga Zamalloa and B. Krishnamachari. Analyzing the Transitional Re-
gion in Low Power Wireless Links. In Proceedings of the First Communica-
tions Society Conference on Sensor and Ad Hoc Communications and Networks
(SECON ’04), Santa Clara, CA, USA, October 2004.

[ZK07] M. Zúñiga Zamalloa and B. Krishnamachari. An Analysis of Unreliability
and Asymmetry in Low-Power Wireless Links. ACM Transactions on Sensor
Networks, 3(2), June 2007.

115

Bibliography

116

AppendixA
Simulation Framework: Additional

Material

The simulation environment introduced in Chapter 4 facilitates detailed configura-
tion. This chapter provides an overview of the available parameters and options. In
addition, simulation result files and the log file format is explained.

A.1 Simulation Parameters

Running a simulation requires configuration, which consists of setting up the simu-
lation script as well as specifying the ns-2 options and parameters. An overview is
provided in the following.

A.1.1 Basic Simulation Configuration

The simulation script introduced in Section 4.2.3 is configured via the environ-
ment variables listed in Table A.1. NS2_SIM_BASEDIR sets the path to the sim-
ulation environment. NS2_SETTINGS_PATH specifies the path at which reading
the simulation setting is started. The simulation script reads, for each setting
component, the first file found on the way from $NS2_SETTINGS_PATH up to
$NS2_SETTINGS_PATH/data/settings. The other variables are used for sanity
checks, specific setup of the simulation run, and result-file naming (cf. Section A.2).
E.g., the area size and the number of nodes are compared with the corresponding val-
ues read from the found setting files. The slot assignment provided by NS2_SLOTS

additionally determines the employed MAC. SlotPassingTreeTDMA is used for

117

A Simulation Framework: Additional Material

Environment-Variable Description

NS2_SIM_BASEDIR Path to the simulation base directory
Example: �/treemacframework/sim

NS2_SETTINGS_PATH Path for starting the search for simulation setting files
Example: �/treemacframework/sim/data/settings/
area_1000x1000/nodes_0100/cnt_007/tree_8/
buf_200_25_75/slots_1_cch

NS2_AREA_SIZE Area size in meters, must match the specification of a topology’s
filename
Example: 1000x1000

NS2_NUM_NODES Four digit encoded number of nodes
Example: 0100

NS2_COUNTER Three digit encoded experiment counter
Example: 007

NS2_TREE Value of C of the corresponding tree, leave empty for unspecified C
Example: 8

NS2_BUFFER_SIZE Size of buffer and the percentages of lowest and highest fill level
Example: 200_25_75

NS2_SLOTS Type and name of a slot assignment as provided by the slot assign-
ment script
Example: 1_cch

� Table A.1: Environment variables for the simulation script Simulation.tcl

Type II, StaticTreeTDMA else. NS2_COUNTER distinguishes between topologies
with the same parameters.

A.1.2 Options of the Simulation Script

The main part of configuration is done via OTcl variables that are read from
rc_default.tcl and the individual configuration files for the simulation run (cf. Sec-
tion 4.2.3). They are used by the simulation script to set up ns-2 accordingly. Ta-
ble A.2 lists all configuration variables required in Chapter 5. A variable var is set
as the key of the global opt array, i.e., opt(var).

Most configuration is required for the radio chip and the propagation model. Note
that the receive threshold θrx and the carrier sense threshold θcs are not explicitly
configured. ns-2 provides a tool for calculating θrx from the remainder of the variables,
particularly the propagation model and the communication radius. θcs is determined
by θrx and θint (cf. Section 4.1.3). If an encoding and a modulation class are configured,
they are used to calculate bit errors that result in the simulation of packet errors.
Currently, θcs is used as the noise floor during computation of the bit error rate (cf.
Equations 2.3 and 2.4).

118

A.1 Simulation Parameters

Key in opt(.) Type / Unit Description

Radio Parameters, MAC and Physical Layer
antennaHeight meter Height of the antenna
bandwidth bits/s Communication bandwidth
commRadius meter Communication radius
csGain dB Carrier sense gain as compared to receive threshold
encoding class name Encoding scheme used to calculate packet error prob-

abilities from the given BER
frequency Hertz Communication frequency
macCaptureDB dB Interference threshold θint

macMaxRetries int Maximum number of retry attempts r
modulation class name Modulation scheme used to calculate bit error rates
pathLoss decimal Pathloss exponent for the shadowing model
propagation class name Used propagation model
radiochip chip name Radio chip configuration file; must exist in the config

folder of the simulation environment. Options set in
the radio chip file have precedence over default values

shadowDB dB Deviation of random signal power part for shadowing
model

slotcoder class name The class used for slot coding required by Type II
txPower mW Transmission power common to all nodes

Buffer Setup
queueHardLimit int Buffer size B
queueSoftLimitPerc fraction Fraction of the soft buffer limit and its size: B̃{B
queueUseAutoLimit bool If true, the buffer size provided by the settings file is

used to overwrite queueHardLimit
queueUseHardLimit bool If the buffer size is to be obeyed or not; if set to false,

the buffer is infinite

Simulation Evaluation
writeConfig bool Whether to write the full configuration to a file
writeLogfiles bool Whether to create log files
writeSetting bool Whether to create a settings file

� Table A.2: OTcl variables for simulation configuration via Simulation.tcl

A.1.3 OTcl Variables

The implementation of the data-collection protocol presented in Section 4.3 is de-
signed to be highly configurable via OTcl. Table A.3 provides a summary of all
available variables, including their type and a short description. Some of them are
initialized by Simulation.tcl using the simulation script options in Table A.2.

119

A Simulation Framework: Additional Material

OTcl Binding Type Description

Phy/WirelessPhy/WSNPhy

sleepAtStartup_ bool Determines, if the transceiver is initially off
preambleLength_ bytes MAC packet overhead in bytes (MAC header + pream-

ble + postamble)

Queue

limit_ int Size of the queue in number of packets

Queue/TreeRouting

obeyLimit_ bool If set to false, packets can be queued beyond the speci-
fied queue size

softLimit_ int If obeyLimit_ is set to true, this value is used as the
buffer soft limit B̃

Queue/TreeRouting/Prio

ackWaveThrough_ bool If set to true, ACKs are not queued, but sent directly
to the MAC

Mac

bandwidth_ bandwidth Bandwidth of the Wireless Communication
delay_ time Simulated delay between packets leaving the MAC and

arriving at the link layer

Mac/TreeTDMA

maxRetries_ int Maximum number of transmission retries
maxSlotSkipping_ int Maximum number of skipped slots in flow control
nSlotsPerFrame_ int TDMA round length
slotTime_ time Overall size of a sending slot, excluding the initial guard

interval
slotGuardTime_ time Length of the initial guard interval
txrxTurnaroundTime_ time Time required by the transceiver to switch between

sending and receiving
rxIdleTimeout_ time Time a node waits for a reception; after expiration, the

transceiver is switched off
firstSlotTime_ time Initial MAC setup time
macPktOverhead_ bytes Preamble and postamble for transmission
sendKeepalives_ bool If set to true, keepalive packets are sent

Mac/TreeTDMA/Static/SlotPassing

maxPiggybackedSize_ bytes Maximum number of additional bytes allowed for pig-
gybacking slots

maxStandaloneSize_ bytes Maximum number of bytes allowed for sending slots in
standalone packets

fwdPerKept_ bool Determines the number of forwarded slots per kept one

Agent/TreeRouting/Static

maxHistSize_ int Size of packet history

Agent/TreeAppAgent

payloadSize_ bytes Simulated payload of a data packet in bytes; including
application and routing header

� Table A.3: Class variables available via OTcl

120

A.2 Format of the Simulation Result Files

cntRx_ 358 2 21 61 26 15 17 52 39 100 36 54 39 108 7 20 94 37 6 2
cntTx_ 358 2 21 61 26 15 17 52 39 100 36 54 39 108 7 20 94 37 6 2
cntTxAcks_ 358 0 0 21 0 0 0 20 0 41 0 19 0 43 0 0 45 0 0 0
cntRxAcks_ 0 2 21 40 26 15 17 32 39 59 36 35 39 65 7 20 49 37 6 2
timeDisabled_ 0 4.335916911570501 40.235916822406281 Ö

75.135916842003013 49.83591676093549 29.335916816446183 Ö

32.035916773527219 60.135916755052698 74.235916777235104 Ö

111.93591690553001 68.635916777909472 65.73591688348057 Ö

74.035916731991648 123.13591683077306 14.235916892199578 Ö

38.035916834193699 92.635916866046045 69.735916759807253 Ö

12.03591685770416 4.5359169283514733
cntPktCollected_ 358 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cntPktCreated_ 0 2 21 19 26 15 17 12 39 18 36 16 39 22 7 20 4 37 6 2

� Listing A.1: Part of an evaluation file of a simulation run

A.2 Format of the Simulation Result Files

For each simulation run, four result files are generated in the directory in which the
simulation script is executed. They follow a naming scheme based on the environment
variables explained in Section A.1.1 in combination with suitable prefixes. Using the
values from Table A.1, an example for such a base name would be area_1000x1000,-
nodes_0100,count_007,tree_8,buffer_200_25_75,slots_1_cch. Note that this nam-
ing scheme reflects the path structure introduced in Section 4.2.2.

The main result file has the extension .dat. For each node in the network, it in-
cludes the values of counter and state variables produced during a simulation. The
file contains one line for each of those variables. A line commences with the variable
name and is followed by the values of each node, sorted ascendingly by the node iden-
tifiers and separated by whitespaces. Listing A.1 shows an extract of such a file. The
counter cntPktCreated_ gives information about the number of packets created
per node, whereas cntPktCollected_ tells the number of packets collected. Note
that this value is nonzero only for the sink node with identifier 0. The file also shows
that no packets have been lost, as the counters cntTx_ and cntRx_—indicating the
number of sent and received packets—do not differ for individual nodes. Table A.5
gives an overview about all available variables and the classes they are defined in.
Documentation can be found in the corresponding C++ header files.

The remaining result files are as follows. One result file (.set) contains the paths to
the used setting files. Another one (.cfg) includes the complete OTcl configuration,
i.e., all key-value pairs of the opt array. The creation of both files can be switched on

121

A Simulation Framework: Additional Material

0|9.8|3:5|phy wakeup
7|9.8|3:5|trying to get a new tx pkt
7|9.8|3:5|phy wakeup
7|9.802|3:5|tx TreeAppData to node 0, txtime 0.0213, attempt 1, skip 0
0|9.8233|3:5|recv new pkt from 7 in TreeTDMA::sendUp()
0|9.8243|3:5|tx TreeRoutingACK to node 7, txtime 0.0116667, attempt Ö

1, skip 0
0|9.8359|3:5|sleep
0|9.8359|3:5|phy sleep
7|9.8359|3:5|recv good routing ack
7|9.8359|3:5|recv new routing ack from 0 in StaticTreeTDMA::sendUp()
7|9.8359|3:5|sleep
7|9.8359|3:5|phy sleep

� Listing A.2: Part of a log file

or off via opt(writeConfig) and opt(writeSetting) in the OTcl configura-
tion (cf. Section A.1.2). A report file (.rep) gives a brief summary of the simulation.
It includes information about simulated runtime, the number of created and collected
packets, and which nodes have not been able to clear their buffers.
In addition, log files are created for the different protocol layers (cf. Section 4.3.6), if

opt(writeLogfiles) is set to true (cf. Table A.2). Their names can be configured
using the variables shown in Table A.4. These files provide a detailed trace of the
simulation, so that they can be used for a deeper analysis. However, log files become
very large and slow down simulation time, so that it is recommended to disable them,
unless they are required. An extract from such a log file is shown in Listing A.2. Each
line has four fields, separated by the pipe symbol |. The first field holds the node
identifier, the second one shows the simulation time (in seconds), and the third one
provides the current TDMA round and slot. It follows the actual logging message.
The example traces the communication between node v7 and v0 (the sink). First, both
nodes wake up in slot 5 of round 3, and v7 acquires a new packet for transmission.
Line 4 shows the details about the sent packet, e.g., the packet type and the time
required for transmission. The packet is received by v0 as indicated in line 5. It follows
the transmission of the acknowledgment. Note that v0 goes to sleep after the packet
has been completely sent, and v7 reports completed reception almost simultaneously.
The propagation delay applied by ns-2 is so small that it cannot be inferred from
the simulation time in the second field. After v7 has sent the packet up (to the link
layer), it sleeps, i.e., it turns off its transceiver.

122

A.2 Format of the Simulation Result Files

OTcl Variable Default Value Comment

log(app) app.log Application messages, esp. created and collected
messages

log(ll) linklayer.log Link layer logging
log(mac) mac.log Messages produced by all classes of the MAC layer,

includes a detailed tracing of all actions
log(queue) queue.log Log messages produced by the buffer, includes a trace

of each buffer’s fill level
log(root) root.log All loggings that are not bound to a specific layer
log(routing) routing.log Routing information

� Table A.4: Log-file configuration

Evaluation Counters and State Variables

Queue/TreeRouting

avgFillLevel_ cntDequeued_ cntDropped_

cntLimitExceeded_ cntQueued_ maxFillLevel_

Queue/TreeRouting/Prio

cntAcksDropped_ cntAcksQueued_ cntAcksRecv_

Mac/TreeTDMA

cntMixedSlotsUsed_ cntRecvSlotsUsed_ cntRx_

cntRxBroken_ cntRxCaptures_ cntRxCollisions_

cntRxDuplicates_ cntRxIgnored_ cntRxInterrupted_

cntRxKeepalives_ cntRxOverhearings_ cntRxRetriesExpired_

cntRxSentUp_ cntRxTimeouts_ cntSendSlotsNoPkt_

cntSendSlotsSkipped_ cntSendSlotsUsed_ cntSkipRequests_

cntSleepSlotsUsed_ cntTx_ cntTxKeepalives_

cntTxRetries_ cntTxRetriesExpired_ timeDisabled_

timeLastTx_ timeOn_ timeRx_

timeTx_

Mac/TreeTDMA/Static

cntRxAcks_ cntRxAcksSentUp_ cntRxAckTimeouts_

cntRxKeepaliveAcks_ cntTxAcks_ cntTxKeepaliveAcks_

Mac/TreeTDMA/Static/SlotPassing

cntFwdSlots_ cntFwdSlotsTx_ cntFwdSlotsAcked_

cntNewSendSlots_ cntNewSendSlotsTx_ cntNewSendSlotsAcked_

cntNewRecvSlots_ cntRxSlotPassings_ cntRxSlotPassingAcks_

Agent/TreeAppAgent

cntPktCollected_ cntPktCreated_

� Table A.5: Evaluation counters in alphabetical order, grouped by class membership

123

A Simulation Framework: Additional Material

124

AppendixB
Scripts for Creating Simulation Settings

For the creation and basic analysis of simulation setups, various scripts have been
developed. They are introduced in this chapter. Detailed information on script usage
can be obtained by executing the corresponding script with options -man or -help.

B.1 Topology Generation

The topology scripts introduced in the following produce or use a topology description
file with common format: For each node in the network, its identifier, starting with 0,
and position (x-, y-, z-coordinates in meters) are written to a new line and separated
by single whitespaces.

createGridTopology.pl produces a square grid topology with a specified distance
between horizontally and vertically adjacent nodes.

createDenseTopology.pl creates a connected, randomized grid topology with a
specified density (in the center of the network). Based on a unit grid, nodes are
distracted randomly from their initial position. Three different random distributions
for node displacement are supported: normal, triangular, and uniform distribution.
Their confidence, which is the probability with that a node does not leave its unit
square, can be customized. Before nodes are distracted, the initial grid is scaled to
approximate the desired node density with regard to the communication radius.

createRandomTopology.pl creates a connected, random topology. Nodes are ran-
domly arranged in a given area using a uniform distribution. The sink is placed in the
center of the area, unless otherwise specified. A placement rectangle is then set up

125

B Scripts for Creating Simulation Settings

with edge length according to the double communication radius and its center being
the sink. The next node is randomly placed inside this rectangle, and, depending
on its position, the rectangle is enlarged. This enhancement increases the chance of
connectivity in a sparse network and thus improves script runtime, as repair has to
be applied, if the topology is not connected.

createCircularTopology.pl generates a circular topology. The script places circles of
C` nodes around the sink, where the radius of the circles increases with `. In the last
circle, there may be less nodes. The purpose of this placement strategy is to create
topologies that can be used to obtain minimum-depth trees.

calcDensity.pl calculates and outputs for each node of the network the number of
nodes inside its communication radius (including the center node). From this, the
network density as defined in Section 2.1.2 can be calculated.

calcDensityStat.pl calculates and outputs a statistical analysis of network density.
For each node in the network, the script determines the number of nodes inside its
communication circle (including the node itself) and generates the following statistical
data (in this order): number of nodes; minimum, maximum, and average number of
nodes in a communication circle, standard deviation of the average, and the median.

calcDistance.pl calculates and outputs the distances between each two nodes.

showTopology.pl displays the network defined by the specified topology file or cre-
ates a gnuplot or tikz file from it. The script is capable of marking individual nodes
and showing the tree, if a tree specification file is provided.

editTopology.tcl is a network graph editor for existing topologies. Nodes can be
moved via drag and drop.

B.2 Tree Construction

The tree scripts introduced in the following produce a tree description file with com-
mon format. For each node in the network, its identifier, depth, and the identifiers of
its children in the tree are written to a new line and separated with single whitespaces.

126

B.3 Buffer Initialization

createTree.pl creates a (routing) tree rooted in the sink for the specified topology
using a breadth-first search. Starting with the sink at tree level 0, the script determines
the closest nodes inside communication range and makes them the sink’s children.
If no more children can be added to the sink, the script continues with the newly
added nodes at tree level 1. From all nodes that are not yet connected to the tree,
the one with closest distance to a level 1 node is added as that node’s child. If all
nodes inside communication range have been added as children of a level 1 node,
the algorithm proceeds in the same fashion with the newly added level-2 nodes. This
procedure continues, until all nodes have been added to the tree. If required, the
script can be configured to restrict the maximum number of children per node. In
this case, unconnected nodes are added to the closest parent that has not reached
the maximum number of children so far. Additionally, the script proceeds to the next
tree level as soon as new parent-child connections become impossible in the current
level.

calcBalance.pl computes the balance of the specified tree using the Chebyshev
Sum [DH03] as metric.

B.3 Buffer Initialization

The buffer creation script introduced in this section produces a buffer description file.
For each node in the network, its identifier and initial buffer fill level are written to
a new line and separated by a single whitespace.

createBufferLevels.pl creates random buffer fill levels for each node (except the
sink) of the given topology. The script takes the buffer size and the minimum and
maximum fill level (in percent) as input. The fill level for each node is then drawn
independently from a uniform distribution with values inside the given bounds.

B.4 Slot Assignment

The slot assignment scripts introduced in the following produce an assignment de-
scription file with common format: For each node in the network, its identifier and its
(sending) slots are written to a new line and separated with single whitespaces. Slots
are represented as integers starting from 0. The sink is assigned slot �1 to explicitly
indicate that it has no slot.

127

B Scripts for Creating Simulation Settings

assignSlots-type1-cch.pl performs a 2-hop node coloring using the Color Con-
straint Heuristic (CCH). The script calculates the interference radius from γ (cf.
Section 2.1.3) and the communication radius Rcom in order to produce a completely
collision-free schedule. This is achieved by computing the 1-hop neighborhoods from
the interference radius and using those to construct the required 2-hop neighborhoods.

assignSlots-type1-tcch.pl creates a 3-hop link coloring based on both a topology
and a corresponding tree using the Color Constraint Heuristic (CCH).

assignSlots-type2.pl creates a Type II slot assignment using the specified tree. Via
a depth-first search in that tree, slots can be assigned in either ascending or descending
order from leafs to the sink.

assignSlots-type3.pl performs a Type III slot assignment by doing a depth-first
search based on the specified tree. The direction of assignment, i.e., either ascending
or descending order from leafs to the sink, can be configured. Additionally, the script
offers support for taking initial buffer fill levels into consideration.

assignSlots-type3-reduced.pl establishes an unoptimized SPR slot assignment as
described in Section 3.3. Along with the tree, the path reuse number κ has to be
provided. All paths consume exactly κ slots, which are always assigned in descending
order from leafs to the sink.

assignSlots-type3-condensed.pl establishes an optimized SPR slot assignment.
Along with the tree, the path reuse number κ has to be provided. Paths shorter
than κ consume only as many slots as they are long. Slots are always assigned de-
scendingly from leafs to the sink.

128

AppendixC
Contents of the DVD

Attached to this thesis is a DVD containing the complete simulation environment,
the source code, the used simulation settings, and extracts of the simulation results.
In the following, the directory structure of the DVD will be pointed out. Furthermore,
installation and setup of the simulation framework will be explained briefly.

C.1 Directory Structure

The DVD contains five directories with the following content. ns-2 contains the un-
modified ns-2 package used for development of the simulation framework and the re-
quired patches. The tools for creating simulation settings as described in Appendix B
can be found in tools. The folder common contains the logging component and the
modulation/encoding scheme for simulating bit error rates. The simulation environ-
ment, including the ns-2 source code for the data-collection protocol, resides below
the treemacframework folder. The results obtained from all simulation runs are stored
in results.

C.2 Installing and Setting up the Simulation Environment

Firstly, the folders treemacframework, common and tools must be copied into an
arbitrary directory. Secondly, the environment variables as described in Section A.1.1
have to be set in order to run a simulation. Additionally, treemacframework/sim and
tools should be added to the PATH environment variable.
The simulation environment has been developed for version 2.31 of ns-2. It is in-

cluded in the archive ns-allinone-2.31.tar.gz and must be installed first. Detailed

129

C Contents of the DVD

information about this can be found on the ns-2 homepage. Next, the patch ns2-
treemac.patch has to be applied in the subdirectory ns-2.31. It also affects the ns-
2 Makefile in order to make $NS2_TREEMAC_EXT/treemacframework/ns2/cc and
$NS2_TREEMAC_EXT/tools available, including all subdirectories. Hence, the vari-
able NS2_TREEMAC_EXT must point to the correct directory. Finally, ns-2 must be
recompiled. An example for installing and patching ns-2 is shown in Listing C.1

tar zxvf ns-allinone-2.31.tar.gz

cd ns-allinone-2.31

./install

cd ns-2.31

patch -p2 < /media/cdrom/ns-2/ns2-treemac.patch

export NS2_TREEMAC_EXT=~/treemac

make clean && make

� Listing C.1: Installing and patching ns-2

130

