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Dynamical Systems for Information Spreading

■ Epidemic spreading based on networks is researched in several disciplines

■ Nodes represent individuals and links denote interactions

■ An item is transmitted from one individual to another through link between them

■ Network structure is an important factor for efficiency of epidemic spreading

■ Various models

■ Deterministic vs. probabilistic

■ Synchronous vs. asynchronous

■ Stationary vs. mobile

■ Discrete vs. continuous
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Discrete Synchronous Dynamical Systems (DSDS)

■ In discrete-time rounds, all nodes concurrently update their state based on local rule

■ Node’s state in round t is determined by states of neighboring nodes in round t − 1

■ Facts

■ After a finite number of rounds a DSDS either reaches fixed point or enters 2-cycle

■ Finding number of fixed points of a DSDS is in general #P-complete

■ Classic research topics

■ Stabilization time: After how many rounds does system become stable

■ Dominance problem: Which initial states lead to a homogeneous system state
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Fixed Points and 2-Cycles

■ Model of this work

■ State of a node is a color: 0 or 1

■ Local rules: Majority and minority rule

■ Finite trees

■ Our main contributions

■ Simple graph-theoretic characterization of fixed points and 2-cycles

■ Upper bounds for number of fixed points and 2-cycles

■ Algorithm to generate all fixed points and 2-cycles
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Motivation

■ Boolean networks (BN) model the dynamics of gene regulatory networks

■ BNs are special type of DSDS for the majority rule

■ Number of fixed points is a measure for general memory storage capacity of BN

■ BNs can solve SAT problems

■ BN fixed points correspond to SAT solutions
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Definitions

Let G(V, E) be a finite graph. A coloring c assigns to each node a value of {0, 1}. C(G)
denotes the set of all colorings of G.

A DSDS is a mapping M : C(G) −→ C(G). For an initial coloring c, M yields a series of
colorings c,M(c),M(M(c)), . . ..

Discrete Synchronous Dynamical Systems (DSDS)

Minority process MIN : Each node assumes the color of the minority of its neighbors.
Minority Process
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Example of Minority Process

■ Minority process reaches fixed point after five rounds
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Specific Colorings

c ∈ C(G) is called

■ fixed point if M(c) = c

■ 2-cycle if M(c) , c and M(M(c)) = c

■ monochromatic if all nodes have the same color

■ independent if the color of each node is different from the colors of all its neighbors

A 2-cycle c is called pure if it is M(c) (v) , c(v) for each node v of G

Fixed Points and 2-Cycles
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Examples

A fixed point A 2-cycle
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Classes of Colorings

■ FM (G): All c ∈ C(G) that constitute a fixed point

■ C2
M (G): All c ∈ C(G) that constitute a 2-cycle

■ PM (G): All c ∈ C(G) that constitute a pure coloring

Classes of Colorings

■ Classes are closed with respect to complements

■ Let FM (G)+, C2
M (G)+, and PM (G)+ be the subsets of those colorings of corresponding

sets which assign to a globally distinguished node v∗ color 0
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Characterizing Fixed Points

■ Let T = (V, E) be a tree

■ Goal: Characterization of FM (T)

■ We identify a nonempty subset Efix (T) ⊂ 2E and define a bijection

Bfix : Efix (T) −→ FM (T)+

■ It is easy to compute Efix (T)
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Characterizing Fixed Points

■ Let v ∈ V and F ⊆ E. Then Fv denotes the number of edges of F incident with v

Let E2(T) be the set of edges, where each end node has degree at least 2. F ⊆ E2(T) is
called legal if Fv ≤ deg(v)/2 for each node v.

Efix (T) denotes the set of all legal subsets F of E2(T)

Definition

Note that Efix (T) satisfies the hereditary property
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Characterizing Fixed Points
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■ Efix (T1) = {∅, {(1, 3)}}

■ Efix (T2) = {∅}

■ Efix (T3) = {∅, {(1, 2)}, {(2, 3)}, {(3, 4)}, {(1, 2), (3, 4)}}
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Characterizing Fixed Points

For each tree T there exists a bijection Bfix between Efix (T) and FM (T)+.
Theorem

■ For F ∈ Efix (T) define cF ∈ FMIN (T)+ such that edges in F are monochromatic
■ Let CT (F) be the set of connected components of T\F
■ Let T∗ ∈ CT (F) with v∗ ∈ T∗. Let cF (v∗) = 0
■ Extend cF to an independent coloring of T∗ (breadth-first search)
■ While there exists an already colored node u with an uncolored neighbor w in T do

■ Let T1 ∈ CT (F) with w ∈ T1
■ Let cF (w) = cF (v) and extend cF to an independent coloring of T1 (tricky!)

General idea of proof.
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Characterizing Fixed Points

■ Examples for F = ∅ and F = {(1, 3)}
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Counting Fixed Points of Trees

Every tree has at least two fixed points.
Corollary

Let T be a tree. Then |FM (T) | ≤ 2Fn−⌈∆/2⌉ . If T is a path then |FM (T) | = 2Fn−1.
Theorem

■ Bound is not sharp (star graph)
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Generating Fixed Points of Trees

There exists an algorithm to compute all |F (T) | fixed points of a tree T in time
O(n + |F (T) | |E2(T) |) using O( |E2(T) | |F (T) |) memory.

Theorem

■ Algorithm exploits hereditary property of Efix (T)
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Pure 2-Cycles

■ Similar type of characterization

Let E3(T) be the set of edges, where each end node has degree at least 3. F ⊆ E3(T) is
called legal if Fv < deg(v)/2 for each node v.

Epure(T) denotes the set of all legal subsets F in E3(T).

Definition

For each tree T there exists a bijection Bpure between Epure(T) and PM (T)+.
Theorem
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Characterizing Pure 2-cycles of Trees
a b c

■ E3(T) consists of three edges (solid lines)

■ Epure(T2) = {∅, {a}, {b}, {c}, {a, c}}

■ Pure 2-cycle for F = {a, c}

a b c a b c
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Counting Pure 2-cycles of Trees

■ |PM (T) | ≤ 21+(n−4)/2

■ Bound is not sharp (see previous example)

■ Efficient algorithm for generating pure 2-cycles
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Block Tree

Let T be a tree and c ∈ C2
M (T). Let Vf (resp. Vt) be the set of fixed (resp. toggle) nodes

of c and Tf (resp. Tt) the subgraph of T induced by Vf (resp. Vt).

Definition

Let T be a tree, c ∈ C2
M (T), and T′ a connected component of Tf (resp. Tt). Then c

induces a fixed point (resp. a pure 2-cycle) on T′.

Lemma
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Block Tree

Let T be a tree, c ∈ C2
M (T), and T1, . . . , Ts the connected components of Tf and Tt. The

block tree Bc(T) of T for c is a tree with nodes {T1, . . . , Ts}. Ti and Tj are connected if
there exists (u, w) ∈ E with u ∈ Ti and w ∈ Tj.
A node Ti is called a fixed block (resp. toggle block) of Bc(T) if Ti is a connected
component of Tf (resp. Tt).

Definition
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Block Tree

One toggle and one fixed block Two toggle and one fixed block
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Block Tree

E 2.5(T) denotes the set of edges, where one end node has degree at least 2 and the
other at least 3. For F ⊆ E 2.5(T) a component T̂ ∈ CT (F) is called fixed if | T̂ | = 1 or if
there exists v ∈ T̂ such that degT (v) ≡ 0(2) and degT̂ (v) = 1. Fix(T, F) denotes the set of
all fixed components of CT (F).

F ⊆ E 2.5(T) is called legal if all components of Fix(T, F) are fully contained in I0(TF)
and if T0 ∈ CT (F) with T0 = {v} then degT (v) ≡ 0(2).

Eblock(T) denotes the set of all legal subsets of E 2.5(T).

Definition
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Block Tree

For each tree T there exists a bijection Bblock between Eblock(T) and the block trees of T.
Theorem

■ Note, Eblock(T) does not satisfy the hereditary property

■ No efficient algorithm to generate all block trees is known
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Conclusion & Outlook

■ Contributions

■ Characterization of fixed points, pure and general 2-cycles for minority/majority
process

■ Algorithm to enumerate all fixed points and pure 2-cycles

■ Upper bounds for number of fixed points

■ Open problems

■ Generalization to other graph classes (results do not hold for cycles)

■ Better upper bounds

■ Compute expected sizes for random trees
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