Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes on Trees

Volker Turau

29th Int. Colloquium on Structural Information and Communication Complexity June 29th, 2022

Institute of Telematics Hamburg University of Technology

TUHH

Introduction

Dynamical Systems for Information Spreading

- Epidemic spreading based on networks is researched in several disciplines
 - Nodes represent individuals and links denote interactions
 - An *item* is transmitted from one individual to another through link between them
- Network structure is an important factor for efficiency of epidemic spreading
- Various models
 - Deterministic vs. probabilistic
 - Synchronous vs. asynchronous
 - Stationary vs. mobile
 - Discrete vs. continuous

Discrete Synchronous Dynamical Systems (DSDS)

- In discrete-time rounds, all nodes concurrently update their state based on local rule
 - Node's state in round t is determined by states of neighboring nodes in round t 1

Facts

- After a finite number of rounds a DSDS either reaches fixed point or enters 2-cycle
- Finding number of fixed points of a DSDS is in general #P-complete
- Classic research topics
 - Stabilization time: After how many rounds does system become stable
 - Dominance problem: Which initial states lead to a homogeneous system state

Fixed Points and 2-Cycles

- Model of this work
 - State of a node is a color: 0 or 1
 - Local rules: Majority and minority rule
 - Finite trees

- Our main contributions
 - Simple graph-theoretic characterization of fixed points and 2-cycles
 - Upper bounds for number of fixed points and 2-cycles
 - Algorithm to generate all fixed points and 2-cycles

Motivation

- Boolean networks (BN) model the dynamics of gene regulatory networks
- BNs are special type of DSDS for the majority rule
- Number of fixed points is a measure for general memory storage capacity of BN
- BNs can solve SAT problems
- BN fixed points correspond to SAT solutions

Definitions

Definitions

Discrete Synchronous Dynamical Systems (DSDS)

Let G(V, E) be a finite graph. A **coloring** c assigns to each node a value of $\{0, 1\}$. C(G) denotes the set of all colorings of G.

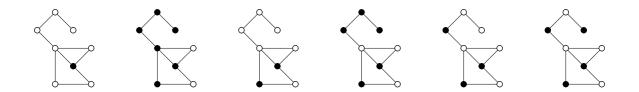
A **DSDS** is a mapping $\mathcal{M} : C(G) \longrightarrow C(G)$. For an initial coloring *c*, \mathcal{M} yields a series of colorings *c*, $\mathcal{M}(c)$, $\mathcal{M}(\mathcal{M}(c))$,

Minority Process

Minority process MIN: Each node assumes the color of the minority of its neighbors.

Definitions

Example of Minority Process



Minority process reaches fixed point after five rounds

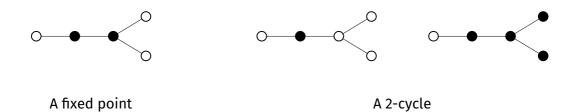
Specific Colorings

Fixed Points and 2-Cycles

- $c \in \mathcal{C}(G)$ is called
- fixed point if $\mathcal{M}(c) = c$
- **2-cycle** if $\mathcal{M}(c) \neq c$ and $\mathcal{M}(\mathcal{M}(c)) = c$
- monochromatic if all nodes have the same color
- independent if the color of each node is different from the colors of all its neighbors

A 2-cycle c is called **pure** if it is $\mathcal{M}(c)(v) \neq c(v)$ for each node v of G

Examples



Classes of Colorings

Classes of Colorings

- $\mathcal{F}_{\mathcal{M}}(G)$: All $c \in C(G)$ that constitute a fixed point
- $C^2_{\mathcal{M}}(G)$: All $c \in C(G)$ that constitute a 2-cycle
- $\mathcal{P}_{\mathcal{M}}(G)$: All $c \in C(G)$ that constitute a pure coloring

- Classes are closed with respect to complements
- Let 𝓕_M(G)⁺, 𝒪²_M(G)⁺, and 𝓕_M(G)⁺ be the subsets of those colorings of corresponding sets which assign to a globally distinguished node v^{*} color 0

Fixed Points of Trees

- Let T = (V, E) be a tree
- Goal: Characterization of $\mathcal{F}_{\mathcal{M}}(T)$
- We identify a nonempty subset $E_{fix}(T) \subset 2^E$ and define a bijection

$$\mathcal{B}_{fix}: E_{fix}(T) \longrightarrow \mathcal{F}_{\mathcal{M}}(T)^+$$

• It is easy to compute $E_{fix}(T)$

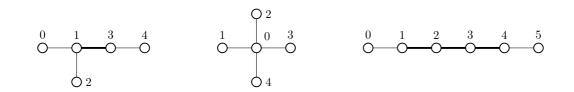
• Let $v \in V$ and $F \subseteq E$. Then F_v denotes the number of edges of F incident with v

Definition

Let $E^2(T)$ be the set of edges, where each end node has degree at least 2. $F \subseteq E^2(T)$ is called **legal** if $F_V \leq deg(v)/2$ for each node v.

 $E_{\text{fix}}(T)$ denotes the set of all legal subsets F of $E^2(T)$

Note that $E_{fix}(T)$ satisfies the hereditary property



- $E_{fix}(T_1) = \{\emptyset, \{(1,3)\}\}$
- $E_{fix}(T_2) = \{\emptyset\}$

• $E_{fix}(T_3) = \{\emptyset, \{(1,2)\}, \{(2,3)\}, \{(3,4)\}, \{(1,2), (3,4)\}\}$

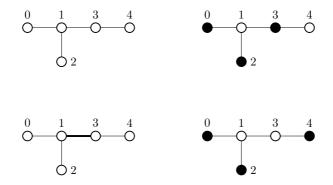
Theorem

For each tree T there exists a bijection \mathcal{B}_{fix} between $E_{fix}(T)$ and $\mathcal{F}_{\mathcal{M}}(T)^+$.

General idea of proof.

- For $F \in E_{fix}(T)$ define $c_F \in \mathcal{F}_{MIN}(T)^+$ such that edges in F are monochromatic
- Let $C_T(F)$ be the set of connected components of $T \setminus F$
- Let $T^* \in C_T(F)$ with $v^* \in T^*$. Let $c_F(v^*) = 0$
- Extend *c_F* to an independent coloring of *T** (breadth-first search)
- While there exists an already colored node *u* with an uncolored neighbor *w* in *T* do
 - Let $T_1 \in C_T(F)$ with $w \in T_1$
 - Let $c_F(w) = c_F(v)$ and extend c_F to an independent coloring of T_1 (tricky!)

• Examples for $F = \emptyset$ and $F = \{(1, 3)\}$



Counting Fixed Points of Trees

Corollary

Every tree has at least two fixed points.

Theorem

Let T be a tree. Then $|\mathcal{F}_{\mathcal{M}}(T)| \leq 2F_{n-\lceil \Delta/2 \rceil}$. If T is a path then $|\mathcal{F}_{\mathcal{M}}(T)| = 2F_{n-1}$.

Bound is not sharp (star graph)

Generating Fixed Points of Trees

Theorem

There exists an algorithm to compute all $|\mathcal{F}(T)|$ fixed points of a tree T in time $O(n + |\mathcal{F}(T)||E^2(T)|)$ using $O(|E^2(T)||\mathcal{F}(T)|)$ memory.

• Algorithm exploits hereditary property of $E_{fix}(T)$

Pure 2-Cycles

Pure 2-Cycles

Similar type of characterization

Definition

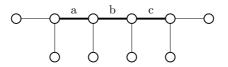
Let $E^3(T)$ be the set of edges, where each end node has degree at least 3. $F \subseteq E^3(T)$ is called **legal** if $F_v < deg(v)/2$ for each node v.

 $E_{pure}(T)$ denotes the set of all legal subsets F in $E^{3}(T)$.

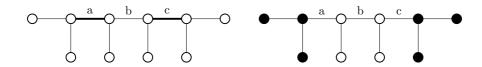
Theorem

For each tree T there exists a bijection \mathcal{B}_{pure} between $E_{pure}(T)$ and $\mathcal{P}_{\mathcal{M}}(T)^+$.

Characterizing Pure 2-cycles of Trees



- $E^{3}(T)$ consists of three edges (solid lines)
- $E_{pure}(T_2) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, c\}\}$
- Pure 2-cycle for *F* = {*a*, *c*}



Counting Pure 2-cycles of Trees

- $|\mathcal{P}_{\mathcal{M}}(T)| \le 2^{1+(n-4)/2}$
- Bound is not sharp (see previous example)
- Efficient algorithm for generating pure 2-cycles

Block Trees of 2-Cycles

Definition

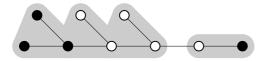
Let *T* be a tree and $c \in C^2_{\mathcal{M}}(T)$. Let V_f (resp. V_t) be the set of fixed (resp. toggle) nodes of *c* and T^f (resp. T^t) the subgraph of *T* induced by V_f (resp. V_t).

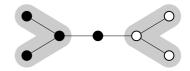
Lemma

Let T be a tree, $c \in C^2_{\mathcal{M}}(T)$, and T' a connected component of T^f (resp. T^t). Then c induces a fixed point (resp. a pure 2-cycle) on T'.

Definition

Let *T* be a tree, $c \in C^2_{\mathcal{M}}(T)$, and T_1, \ldots, T_s the connected components of T^f and T^t . The **block tree** $\mathcal{B}_c(T)$ of *T* for *c* is a tree with nodes $\{T_1, \ldots, T_s\}$. T_i and T_j are connected if there exists $(u, w) \in E$ with $u \in T_i$ and $w \in T_j$. A node T_i is called a *fixed block* (resp. *toggle block*) of $\mathcal{B}_c(T)$ if T_i is a connected component of T^f (resp. T^t).





One toggle and one fixed block

Two toggle and one fixed block

Definition

 $E^{2.5}(T)$ denotes the set of edges, where one end node has degree at least 2 and the other at least 3. For $F \subseteq E^{2.5}(T)$ a component $\hat{T} \in C_T(F)$ is called *fixed* if $|\hat{T}| = 1$ or if there exists $v \in \hat{T}$ such that $deg_T(v) \equiv 0(2)$ and $deg_{\hat{T}}(v) = 1$. Fix(T, F) denotes the set of all fixed components of $C_T(F)$.

 $F \subseteq E^{2.5}(T)$ is called **legal** if all components of Fix(T, F) are fully contained in $I_0(\mathcal{T}_F)$ and if $T_0 \in C_T(F)$ with $T_0 = \{v\}$ then $deg_T(v) \equiv 0(2)$.

 $E_{block}(T)$ denotes the set of all legal subsets of $E^{2.5}(T)$.

Theorem

For each tree T there exists a bijection \mathcal{B}_{block} between $E_{block}(T)$ and the block trees of T.

- Note, *E*_{block}(*T*) does not satisfy the hereditary property
- No efficient algorithm to generate all block trees is known

Conclusion

Conclusion & Outlook

- Contributions
 - Characterization of fixed points, pure and general 2-cycles for minority/majority process
 - Algorithm to enumerate all fixed points and pure 2-cycles
 - Upper bounds for number of fixed points
- Open problems
 - Generalization to other graph classes (results do not hold for cycles)
 - Better upper bounds
 - Compute expected sizes for random trees

Fixed Points and 2-Cycles of Synchronous Dynamic Coloring Processes on Trees

29th Int. Colloquium on Struct

Volker Turau

Professor

Phone +49 / (0)40 428 78 3530 e-Mail turau@tuhh.de http://www.ti5.tu-harburg.de/staff/turau plexity

TUHH

Institute of Telematics Hamburg University of Technology