Sharp Upper Bounds for Reconfiguration Sequences of Independent Sets in Trees

Volker Turau and Christoph Weyer

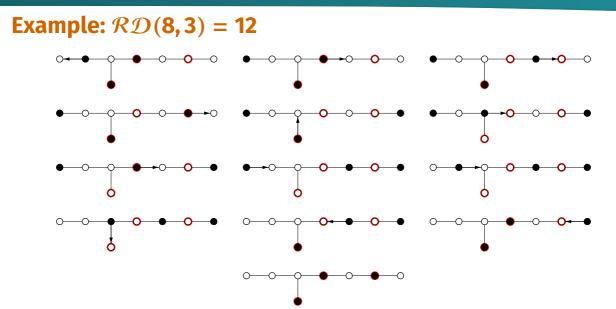
2nd Workshop on Combinatorial Reconfiguration July 4th, 2022

Institute of Telematics Hamburg University of Technology

TUHH

Reconfiguration Sequences of Independent Sets

- T = (V, E) finite tree with *n* nodes, $s \in \mathbb{N}$ with $1 \le s \le n 1$
- *I*_S(*T*) set of independents subsets of *T* of size s
- Reconfiguration graph
 - Undirected graph $\mathcal{G}_{S}(T)$ with node set $\mathcal{I}_{S}(T)$
 - $S_1, S_2 \in I_S(T)$ are connected by an edge if there exists $(v, w) \in E$ s.t. $v \in S_1 \setminus S_2, w \in S_2 \setminus S_1$, and $S_2 = S_1 \setminus \{v\} \cup \{w\}$
- Token sliding model
- Question: What is maximal diameter $\mathcal{RD}(n, s)$ of $\mathcal{G}_{s}(T)$ for given n, s?



Known Results

- Distances in reconfiguration graphs can be computed in O(n) time for cographs, claw-free graphs, and trees [Demaine et al. 2015]
- Diameter of reconfiguration graphs for these classes is in $O(n^2)$
- Family of instances on paths for which diameter of reconfiguration graph is in $\Omega(n^2)$

Results & Conjectures

- Value of $\mathcal{RD}(n, s)$ depends on ratio between s and n
- We consider three regions:
 - 1. s ≪ n
 - 2. s > n/2
 - 3. region in between

Region $s \ll n$

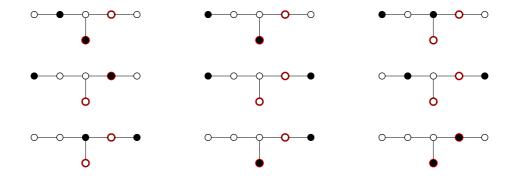
- To maximize $\mathcal{RD}(n, s)$ we need to place S_1 and S_2 as far appart as possible
- If s is small with respect to *n* then this is best possible if *T* is a path

Theorem

$$\mathcal{RD}(n, s) = s(n - 2s + 1)$$
 for $4s < n + 2$.

• Lemma does not hold for n = 6, s = 2

Example: $\mathcal{RD}(6, 2) = 8$



Region s > n/2

- Observation: $\mathcal{RD}(n, s) \leq \mathcal{RD}(n + i + 1, s + i)$ for $i \geq 2$
 - Attach to any node of *T* a star *T_i* with *i* nodes, place leaves of *T_i* into *S*₁ and *S*₂ (provide picture)

Lemma

Let $2s + 1 \ge n$. If T, S_1, S_2 realize $\mathcal{RD}(n, s)$ then there exists a node v with degree $i \ge 2$ such that all but one neighbor of v are leaves contained in $S_1 \cap S_2$.

• If $2s + 1 \ge n$ there exists $i \ge 2$ such that $\mathcal{RD}(n, s) = \mathcal{RD}(n - i, s - (i - 1))$.

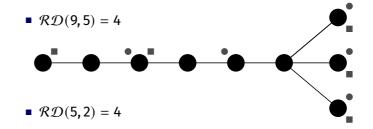
Theorem

There exists a sequence C_i of numbers such that $\mathcal{RD}(n,s) = C_{n-s}$ for $2s + 1 \ge n$.

Region s > n/2

Conjecture

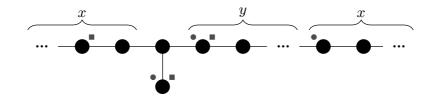
$\mathcal{RD}(\mathbf{n,s})$	
1	
2	
4	
8 12	



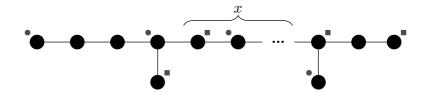
Intermediate Region: 4s > n > 2s + 1

	U		
n	$\mathcal{RD}(n,5)$	$\mathcal{RD}(n,6)$	$\mathcal{RD}(n,7)$
12	21		
13	22		
14	30	26	
15	30	27	
16	40	36	31
17	40	36	32
18	50	48	43
19	50	48	44
20		60	56
21		60	56
22		72	70
23		72	70
24			84
25			84

- No obvious pattern
- No generic tree found
- Region is covered by trees of diameter n - 2 and n - 3



• s = x + y + 1, n = 4x + 2y + 2



• s = x + 2, n = 9 + 2x

Conclusion

Conclusion & Outlook

- Challenge: Maximal diameter $\mathcal{RD}(n, s)$ of $\mathcal{G}_{s}(T)$ for given n, s
- Three regions identified
- Some cases are still open

Sharp Upper Bounds for Reconfiguration Sequences of Independent Sets in Trees

<u>Volker</u> 2nd Workshop

Volker Turau

Professor

Phone +49 / (0)40 428 78 3530 e-Mail turau@tuhh.de http://www.ti5.tu-harburg.de/staff/turau

Institute of Telematics Hamburg University of Technology

TUHH