A Virtual Sink-based Strategy for reducing the Funneling Effect in IEEE 802.15.4 DSME Networks

Ivonne Mantilla-Gonzalez and Volker Turau

DCOSS 2022 May 30th, 2022

Institute of Telematics Hamburg University of Technology

UHH

Agenda

1

Description of the Virtual Sink-based strategy

- Description of the Virtual Sink-based strategy
- Simulative assessment

Description of the Virtual Sink-based strategy

- Simulative assessment
- Conclusions and Outlook

■ Data collection produces an unavoidable funneling effect at nodes close to the sink ⇒ 1-hop neighbors

- Data collection produces an unavoidable funneling effect at nodes close to the sink ⇒ 1-hop neighbors
- Direct consequences: reduced throughput and operational lifetime

- Data collection produces an unavoidable funneling effect at nodes close to the sink ⇒ 1-hop neighbors
- Direct consequences: reduced throughput and operational lifetime Resource allocation ⇒ efficient, dynamic and adaptable!

- Data collection produces an unavoidable funneling effect at nodes close to the sink ⇒ 1-hop neighbors
- Direct consequences: reduced throughput and operational lifetime Resource allocation ⇒ efficient, dynamic and adaptable!
- IEEE 802.15.4 DSME ⇒ reliability, scalability and energy efficiency in IoT applications

Challenge

Challenge

How to extend DSME such that resource allocation and throughput managed by the sink can be done efficiently and change dynamically based on network traffic demand?

Challenge

How to extend DSME such that resource allocation and throughput managed by the sink can be done efficiently and change dynamically based on network traffic demand?

 \Rightarrow We propose a strategy to improve the scheduling of resources through coexistence between centralized and decentralized algorithms

Virtual Sink Concept

Ivonne Mantilla-Gonzalez A Virtual Sink-based Strategy for reducing the Funneling Effect in IEEE 802.15.4 DSME Networks

Virtual Sink Concept

Virtual Sink Concept

- star topology \Rightarrow sink + up to 7 child nodes
- sink controls the resource allocation at child nodes
- easy and cheap way for the sink to obtain information about traffic
- nodes outside the virtual sink algorithm

 Direct slot allocation mechanism

 Direct slot allocation mechanism Centralized scheduling performed by sink node

 Direct slot allocation mechanism

- Centralized scheduling performed by sink node
- Dynamic bandwidth expansion

- Data collection convergecast pattern
- Rooted 3 and 7-multiline (10 and 22 nodes)
- Packet generation rate $\Rightarrow \delta$ [packets/s]
- Packet generation \Rightarrow Poisson distribution with mean= λ

• Varying δ

op DSMEn DSM	Parameter	SO	МО	BO	Q _{GTS}	δ
	Values	3	6	12	92	{3,4,5} for 3-multiline
		3	6	12	92	{7,9,11} for 7-multiline

Packet Reception Ratio (PRR) 3-multiline

Queue length

Challenge:

How to extend DSME such that resource allocation and throughput managed by the sink can be done efficiently and change dynamically based on network traffic demand?

Challenge:

How to extend DSME such that resource allocation and throughput managed by the sink can be done efficiently and change dynamically based on network traffic demand?

by increasing sink's capabilities \Rightarrow Virtual Sink concept

Challenge:

How to extend DSME such that resource allocation and throughput managed by the sink can be done efficiently and change dynamically based on network traffic demand?

by increasing sink's capabilities \Rightarrow Virtual Sink concept

Advantages

- Computational load lies at the sink
- Remaining network nodes operate according to the standard
- Throughput is improved up to 38%, as well as a reduction of delay and overall energy consumption

A Virtual Sink-based Strategy for reducing the Funneling Effect in IEEE 802.15.4 DSME Networks

Ivonne Mantilla-Gonzalez and Volker Turau

DCOSS 2022 May 30th, 2022

Institute of Telematics Hamburg University of Technology

UHH