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Stateless Protocols

Definition (Stateless Protocol)

A stateless protocol is a communications protocol in which no session information is retained by
participating nodes.

� Stateless protocols do not utilize local storage

� Big advantage in high volume applications, increasing performance by removing the load
caused by retention of session information

Information Dissemination Task

Given: A graph G = (V , E), v0 ∈ V , and a message m
Task: Disseminate m to all nodes of V
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Deterministic Flooding

� Deterministic Flooding
� Originator v0 sends message to all neighbors
� A node receiving message for first time sends it to all its neighbors

� Properties
� stateful algorithm

I each node keeps a record of which messages have already arrived

� storage per node ≈ number of disseminated messages
� nodes cannot detect termination⇒ required storage grows over time
� termination in εG(v0) + 1 rounds (εG(v0) is maximal distance of v0 to any other node)
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Amnesiac Flooding

� Stateless variant of flooding by Hussak & Trehan [PODC19]

� Only for synchronous systems

Every time a node receives a message, it forwards it to those neighbors from which it
didn’t receive message in current round

� Difference to classic flooding, a node may forward a message several times
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Amnesiac Flooding: Examples

Simple observation: Amnesiac flooding on bipartite graphs terminates in εG(v0) rounds
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Amnesiac Flooding: Results

� FloodG(v0) denotes number of rounds of AAF until termination
� AAF terminates on any finite graph

� If G is bipartite graphs: FloodG(v0) = εG(v0)
� Non-bipartite graphs: FloodG(v0) ≤ εG(v0) + Diam(G) + 1
� Bound is sharp
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Contributions

� Reduction of amnesiac flooding on general graphs to bipartite graphs
� Intuitive insights into amnesiac flooding
� Simplifies proofs

� Extension of single-source flooding to multi-source flooding

� Sharp upper and lower bounds for termination time for multi-source flooding

� Which k -node subset is an optimal source for amnesiac flooding
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The Auxiliary Graph G(v0)

Definition

Denote by F (v0) the subgraph of G with node set V and all edges of G that are not cross edges
with respect to v0.

Figure: Graph G Subgraph F (v0)
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The Auxiliary Graph G(v0)

Definition

Let G(v0) be the graph consisting of two copies of F (v0) with node sets V and V ′ and additionally
for any cross edge (u, w) of G the edges (u, w ′) and (w , u′).

Lemma

G(v0) is bipartite.
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The Auxiliary Graph G(v0)

Lemma

A node v receives a message from w in round i in G iff in round i node v receives a message from
w in G(v0), or v ′ receives a message from w or from w ′ in G(v0).

Theorem

FloodG(v0) = FloodG(v0)(v0) for every v0 ∈ V.

Corollary

FloodG(v0) = εG(v0)(v0) ≤ εG(v0) + Diam(G) + 1.
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Amnesiac Flooding

Algorithm 1: Algorithm AAF distributes message m in the graph G

input :A graph G = (V , E), a subset S of V , and a message m

Initially: Each node v ∈ S sends m to each neighbor;
Each node v executes

M := N(v);
foreach receive(w , m) do

M := M \ {w}
if M 6= N(v) then

forall u ∈ M do send(u, m);
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Amnesiac Flooding: Example
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Multi-Source Flooding
Definition

For S ⊆ V denote by FloodG(S) the number of rounds algorithm AAF requires to terminate when
started by all nodes in S.

Theorem

Let G = (V , E) be a connected graph. For every S ⊆ V there is a bipartite graph G(S) with a node
v∗ such that FloodG(S) = FloodG(S)(v

∗)− 1.

Corollary

FloodG(S) ≤ d(S, V ) + 1 + Diam(G)
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The Graph G(S)

� Let S ⊆ V

� Virtual source v∗

v∗
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The Graph G(S)

v∗
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Optimal Choice of Flooding Set S

Definition

For 1 ≤ k ≤ n define Floodk (G) = min{FloodG(S) | S ⊆ V with |S| = k}

Theorem

Let G = (V , E) be a connected graph.

1. If k > 1 then rk (G) ≤ Floodk (G) ≤ rni
k (G) + 1 ≤ rbk/2c(G) + 1.

2. Floodk (G) = 1 iff n = k or G is bipartite with |V1| = k or |V2| = k.

3. Floodk (G) ≤ 3 if k ≥ n/2.
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Bipartite Graphs

Theorem

Let G = (V1 ∪ V2, E) be a connected, bipartite graph. If k ≥ 1 then

1. Floodk (G) = rk (G) iff G has a k-center S with either S ⊆ V1 or S ⊆ V2

2. Floodk (G) ≤ rk (G) + 2

3. If k ≤ max(|V1|, |V2|) then Floodk (G) ≤ rk (G) + 1
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Conclusion & Outlook

� Construction of a bipartite graph G(S) such that executions of amnesiac flooding on G and
G(S) are equivalent

� Upper and lower bounds for round complexity of multi-source amnesiac flooding
� Open problems related to amnesiac flooding

� Conjecture: If G is connected, non-bipartite then kFloodk (G) ≥ Rad(G) + k − 1
� Floodk (G) assumes one of three values in case G is bipartite. Is it possible to infer from structural

parameters of G the value of Floodk (G)?
� Existence of a stateless asynchronous information dissemination algorithm
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