Amnesiac Flooding: Synchronous Stateless Information Dissemination

Volker Turau

47th Int. Conference on Current Trends in Theory and Practice of Computer Science

January 25th, 2021

Institute of Telematics Hamburg University of Technology TUHH

Introduction

Stateless Protocols

Definition (Stateless Protocol)

A *stateless protocol* is a communications protocol in which no session information is retained by participating nodes.

- Stateless protocols do not utilize local storage
- Big advantage in high volume applications, increasing performance by removing the load caused by retention of session information

Information Dissemination Task

Given: A graph G = (V, E), $v_0 \in V$, and a message *m* Task: Disseminate *m* to all nodes of *V*

Deterministic Flooding

Deterministic Flooding

- Originator v₀ sends message to all neighbors
- A node receiving message for first time sends it to all its neighbors
- Properties
 - stateful algorithm
 - each node keeps a record of which messages have already arrived
 - ullet storage per node pprox number of disseminated messages
 - nodes cannot detect termination \Rightarrow required storage grows over time
 - termination in $\epsilon_G(v_0) + 1$ rounds ($\epsilon_G(v_0)$ is maximal distance of v_0 to any other node)

Amnesiac Flooding

- Stateless variant of flooding by Hussak & Trehan [PODC19]
- Only for synchronous systems

Every time a node receives a message, it forwards it to those neighbors from which it didn't receive message in current round

Difference to classic flooding, a node may forward a message several times

Amnesiac Flooding: Examples

Simple observation: Amnesiac flooding on bipartite graphs terminates in $\epsilon_G(v_0)$ rounds

Amnesiac Flooding: Results

- Flood_G(v_0) denotes number of rounds of A_{AF} until termination
- \mathcal{A}_{AF} terminates on any finite graph
 - If *G* is bipartite graphs: $Flood_G(v_0) = \epsilon_G(v_0)$
 - Non-bipartite graphs: $Flood_G(v_0) \le \epsilon_G(v_0) + Diam(G) + 1$
 - Bound is sharp

Contributions

- Reduction of amnesiac flooding on general graphs to bipartite graphs
 - Intuitive insights into amnesiac flooding
 - Simplifies proofs
- Extension of single-source flooding to multi-source flooding
- Sharp upper and lower bounds for termination time for multi-source flooding
- Which k-node subset is an optimal source for amnesiac flooding

Singe-Source Flooding

The Auxiliary Graph $\mathcal{G}(v_0)$

Definition

Denote by $\mathcal{F}(v_0)$ the subgraph of *G* with node set *V* and all edges of *G* that are not cross edges with respect to v_0 .

Figure: Graph G

Subgraph $\mathcal{F}(v_0)$

The Auxiliary Graph $\mathcal{G}(v_0)$

Definition

Let $\mathcal{G}(v_0)$ be the graph consisting of two copies of $\mathcal{F}(v_0)$ with node sets V and V' and additionally for any cross edge (u, w) of G the edges (u, w') and (w, u').

Lemma

 $\mathcal{G}(v_0)$ is bipartite.

The Auxiliary Graph $\mathcal{G}(v_0)$

Lemma

A node v receives a message from w in round i in G iff in round i node v receives a message from w in $\mathcal{G}(v_0)$, or v' receives a message from w or from w' in $\mathcal{G}(v_0)$.

Theorem

$$Flood_G(v_0) = Flood_{\mathcal{G}(v_0)}(v_0)$$
 for every $v_0 \in V$.

Corollary

$$Flood_G(v_0) = \epsilon_{\mathcal{G}(v_0)}(v_0) \le \epsilon_G(v_0) + Diam(G) + 1.$$

Multi-Source Flooding

Amnesiac Flooding

Algorithm 1: Algorithm \mathcal{A}_{AF} distributes message *m* in the graph *G*

input : A graph G = (V, E), a subset S of V, and a message m

Initially: Each node $v \in S$ sends *m* to each neighbor;

Each node v executes

```
M := N(v);
foreach receive(w, m) do
\[ M := M \setminus \{w\}\]
if M \neq N(v) then
\[ forall u \in M do send(u, m);
```

Amnesiac Flooding: Example

Multi-Source Flooding

Definition

For $S \subseteq V$ denote by $Flood_G(S)$ the number of rounds algorithm \mathcal{A}_{AF} requires to terminate when started by all nodes in S.

Theorem

Let G = (V, E) be a connected graph. For every $S \subseteq V$ there is a bipartite graph $\mathcal{G}(S)$ with a node v^* such that $\mathsf{Flood}_{G}(S) = \mathsf{Flood}_{\mathcal{G}(S)}(v^*) - 1$.

Corollary

 $Flood_G(S) \leq d(S, V) + 1 + Diam(G)$

The Graph $\mathcal{G}(\boldsymbol{S})$

• Let $S \subseteq V$

Virtual source v*

The Graph $\mathcal{G}(S)$

Optimal Choice of Flooding Set

Optimal Choice of Flooding Set S

Definition

For
$$1 \le k \le n$$
 define $Flood_k(G) = \min\{Flood_G(S) \mid S \subseteq V \text{ with } |S| = k\}$

Theorem

Let G = (V, E) be a connected graph.

- 1. If k > 1 then $r_k(G) \le Flood_k(G) \le r_k^{ni}(G) + 1 \le r_{\lfloor k/2 \rfloor}(G) + 1$.
- 2. $Flood_k(G) = 1$ iff n = k or G is bipartite with $|V_1| = k$ or $|V_2| = k$.
- 3. $Flood_k(G) \le 3$ if $k \ge n/2$.

Bipartite Graphs

Theorem

Let $G = (V_1 \cup V_2, E)$ be a connected, bipartite graph. If $k \ge 1$ then

- 1. Flood_k(G) = $r_k(G)$ iff G has a k-center S with either $S \subseteq V_1$ or $S \subseteq V_2$
- 2. $Flood_k(G) \le r_k(G) + 2$
- 3. If $k \le \max(|V_1|, |V_2|)$ then $Flood_k(G) \le r_k(G) + 1$

Conclusion

Conclusion & Outlook

- Construction of a bipartite graph G(S) such that executions of amnesiac flooding on G and G(S) are equivalent
- Upper and lower bounds for round complexity of multi-source amnesiac flooding
- Open problems related to amnesiac flooding
 - Conjecture: If G is connected, non-bipartite then $k \operatorname{Flood}_k(G) \geq \operatorname{Rad}(G) + k 1$
 - Flood_k(G) assumes one of three values in case G is bipartite. Is it possible to infer from structural parameters of G the value of Flood_k(G)?
 - Existence of a stateless asynchronous information dissemination algorithm

Amnesiac Flooding: Synchronous Stateless Information Dissemination

47th Int. Conference on Curre

Volker Turau

Professor

 Phone
 +49 / (0)40 428 78 3530

 e-Mail
 turau@tuhh.de

http://www.ti5.tu-harburg.de/staff/turau

Institute of Telematics Hamburg University of Technology TUHH