Synchronous Concurrent Broadcasts for Intermittent Channels with Bounded Capacities

Volker Turau

28th Int. Colloquium on Structural Information and Communication Complexity (Short Version) June 30th, 2021

Institute of Telematics Hamburg University of Technology

TUHH

Information Dissemination

Single-Source Broadcast

Given: A graph G = (V, E), $v_0 \in V$, and a message *m* located at v_0 Task: Disseminate *m* to all nodes of *V*

Multi-Source Broadcast

Given: A graph G = (V, E), $S \subset V$, and a message *m* located at the nodes of *S* Task: Disseminate *m* to all nodes of *V*

Multi-Message Broadcast

Given: A graph G = (V, E), message m_1, \ldots, m_s located at the nodes v_1, \ldots, v_s Task: Disseminate m_1, \ldots, m_s to all nodes of V

Single-Source Broadcast: Flooding

- Deterministic Flooding
 - Originator sends message *m* to all neighbors
 - Nodes receiving *m* for the first time, send it to all neighbors
 - Flooding is a stateful algorithm
 - Each node keeps a record of which messages have already been received
- Probabilistic Flooding
 - Stateless algorithm
 - Messages are forwarded to neighbors based on a probability
 - Expected number of messages is reduced
- Amnesiac Flooding [PODC19]
 - Stateless deterministic algorithm (synchronous systems)
 - Every time a node receives *m*, it forwards *m* to those neighbors from which it didn't receive *m* in current round

Amnesiac Flooding

Algorithm 1: Algorithm A_{AF} distributes a message in the graph *G*

input : A graph G = (V, E), $v_0 \in V$, and a message m

```
Round 1: v_0 sends m to each neighbor;

Round i > 1: Each node v executes

M := N(v);

foreach receive(w, m) do

\lfloor M := M \setminus \{w\}

if M \neq N(v) then

\lfloor forall u \in M do send(u, m);
```

Amnesiac Flooding: Examples

 \blacksquare \mathcal{A}_{AF} terminates and each message is sent at most twice per edge

Questions

- Can A_{AF} be used for multi-source and multi-message broadcast?
- Yes, if channel capacities are unbounded
- For bounded channel capacities messages must be backed up and send later
- Does A_{AF} terminate in this case?
- Idea: Bounded channels are modelled by intermitted channels

Amnesiac Flooding

- Crucial for termination of A_{AF} :
 - Forwarding of messages is always performed in round immediately following reception
 - \mathcal{A}_{AF} no longer terminates when message forwarding is suspended for some rounds

Figure: Node 2 cannot send messages in rounds 1, 2, 3 and node 3 not in round 1

Contributions

- Algorithm \mathcal{A}_{AFI} :
 - Extension of \mathcal{A}_{AF} to cope with a limited number of channel suspensions
- Proof that A_{AFI} is correct for multi-source broadcasting
- New algorithm for multi-message broadcast

Intermittent Channels

Intermittent Channels

- Basic idea of A_{AFI}
 - If m can't be forwarded in current round, it is postponed until next available round with same parity
 - If blocked round is odd (resp. even), *m* will be forwarded in next available odd (resp. even) round

Round numbers indicate round of reception

Algorithm \mathcal{A}_{AFI}

Algorithm 2: Algorithm A_{AFI} distributes a message *m* in the graph *G*

Initialization

```
parity:= true;
M[true] := M[false] := \bot;
```

```
Each node v executes in every round
Upon receiving message m from w:
M[parity].add(w);
if channel is available and M[parity] \neq \bot then
forall u \in N(v) \setminus M[parity] do send(u, m);
M[parity] := \bot;
parity := \neg parity;
```

function broadcast(*m*)

 $M[parity] := \emptyset;$

Algorithm \mathcal{A}_{AFI}

Theorem

Let G be a graph, A an availability scheme for G, and $f = |\{(v, i) | A(v, i) = false\}|$.

 A_{AFI} delivers a message (resp. terminates) after at most Diam(G) + 2f (resp. 2Diam(G) + 2f + 1) rounds. If G is bipartite each message is forwarded |E| times, otherwise 2|E| times.

Idea of proof:

- For availability scheme A construct a directed bipartite graph $\mathcal{B}_A(v_0)$ such that execution of \mathcal{A}_{AFI} on G with respect to A is equivalent to execution of amnesiac flooding \mathcal{A}_{AF} on $\mathcal{B}_A(v_0)$
- Starting point for construction of $\mathcal{B}_A(v_0)$ is the double cover $\mathcal{G}(v_0)$ of *G*

Double Cover $\mathcal{G}(v_0)$

- Left: *G*: Dashed edges are cross edges (*v*₀ is broadcasting node)
- **Right:** $\mathcal{G}(v_0)$, dashed edges are the replacement edges
- Orientation: Top down, left to right

Predecessors of v in $\mathcal{G}(v_0)$ are copies of nodes in G that send in round i of \mathcal{A}_{AF} a message to v and successors of v in $\mathcal{G}(v_0)$ receive a message from v in round i + 1

The Graph $\mathcal{B}_{A}(v_{0})$

- $\mathcal{G}(v_0)$ is *streched* over time
- \mathcal{B}_A is defined layer by layer
- Nodes of \mathcal{B}_A are of two different types
 - Copies of nodes of $\mathcal{G}(v_0)$ and
 - dummy nodes, they correspond to times when a channel is unavailable
- Execution of \mathcal{A}_{AF} on \mathcal{B}_{A}
 - All nodes including dummy nodes behave according to original A_{AF}
 - No intermitted channels

The Graph $\mathcal{B}_{A}(v_{0})$

Availability scheme A:

 $A(v_2, 1) = A(v_2, 2) = A(v_2, 3) = A(v_3, 1) =$ false and true otherwise.

 \blacksquare \mathcal{B}_A for availability scheme A has four dummy nodes

Conclusion

Conclusion

- Broadcast algorithm A_{AFI} for systems with intermittent channels
- While A_{AFI} is of interest on its own, it is the basis to solve the general task of multi-message broadcasts in systems with bounded channel capacities
- Full paper available at https://arxiv.org/abs/2011

Synchronous Concurrent Broadcasts for Intermittent Channels with Bounded Capacities

28th Int. Colloquium on St

Volker Turau

Professor

 Phone
 +49 / (0)40 428 78 3530

 e-Mail
 turau@tuhh.de

http://www.ti5.tu-harburg.de/staff/turau

Institute of Telematics Hamburg University of Technology TUHH