Stateless Information Dissemination Algorithms

Volker Turau

27th Int. Colloquium on Structural Information and Communication Complexity June 29th, 2020

Institute of Telematics Hamburg University of Technology

UHH

Introduction

Stateless Protocols

Definition (Stateless Protocols)

A *stateless protocol* is a communications protocol in which no session information is retained by participating nodes.

- Stateless protocols do not utilize local storage
- Big advantage in high volume applications, increasing performance by removing the load caused by retention of session information

This paper:

Stateless information dissemination algorithms for distributed systems

Deterministic Flooding

- Originator of information sends message with information to all neighbors
- Whenever a node receives message for the first time, it sends it to all its neighbors
- Flooding is a stateful algorithm
 - Each node keeps a record of which messages have already arrived
- Terminates in $\epsilon_G(v_0) + 1$ rounds ($\epsilon_G(v_0)$ is eccentricity of v_0)
- Requires storage proportional to number of disseminated messages per node
- Since termination of flooding cannot be detected by nodes, storage requirements grow over time

Amnesiac Flooding

- Variant of flooding by Hussak & Trehan [PODC19]
- Only for synchronous systems

Every time a node receives a message, it forwards it to those neighbors from which it didn't receive message in current round

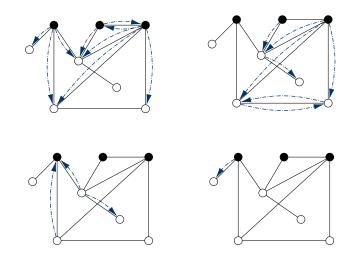
- Difference to classic flooding, a node may forward a message several times
- Amnesiac flooding is stateless

Amnesiac Flooding

Algorithm 1: Algorithm \mathcal{A}_{AF} distributes a message in the graph *G*

input : A graph G = (V, E), a subset S of V, and a message m

Amnesiac Flooding: Example



Amnesiac Flooding

- Amnesiac flooding terminates on any finite graph
- Bipartite graphs: $\epsilon_G(v_0)$ rounds
- Non-bipartite graphs: At most $\epsilon_G(v_0) + Diam(G) + 1$ rounds
- Bounds are sharp

- Big gap to classic flooding
- Does not work for asynchronous systems

Contributions

- Stateless information dissemination algorithms for synchronous and asynchronous systems
- Synchronous systems
 - New stateless flooding algorithm A_{SF} with same termination time as classic flooding
 - Also works for groups of initiators
- Asynchronous systems
 - There exists no deterministic stateless information dissemination algorithm that can only update a constant number of bits of message
 - There exists a stateless information dissemination algorithm that is allowed to update O(log n) bits of message

Definitions

Stateless Information Dissemination

Definition (Truly Stateless Dissemination Algorithm)

A synchronous information dissemination algorithm is called *truly stateless* if

- nodes decides only on basis of messages received in current round which messages to send in this round
- nodes are not allowed to change content of a received message before forwarding.

Stateless Information Dissemination

Definition (f(n)-Stateless Dissemination Algorithm)

Let *f* be a function from \mathbb{N} to \mathbb{N} . An asynchronous information dissemination algorithm is called *f*(*n*)*-stateless* if

- nodes decide only on basis of each received message which messages to send as a reaction
- nodes are allowed to update up to O(f(n)) bits of a message before forwarding it.

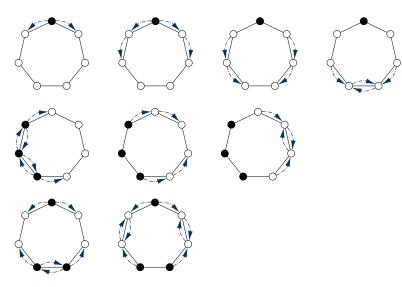
Synchronous Systems

\mathcal{A}_{SF} : Stateless Flooding

- Task: Disseminate information stored at nodes of a set *S*
- First round: Each node of *S* sends message to all neighbors
- Second round: Nodes in S that do not receive a messages sent in round one again send message to all neighbors
- In each of following rounds including round two each node that receives a message forwards message to all neighbors from which it did not receive this message in this round

\mathcal{A}_{SF} : Stateless Flooding

Algorithm 2: Algorithm \mathcal{A}_{SF} distributes a message in the graph G **input**: A graph G = (V, E), a subset S of V, and a message m. Round 1: Each node $v \in S$ sends *m* to each neighbor; Round 2: Each node $v \in S$ that does not receive *m* in round 1 sends *m* to each neighbor in G; Round i > 1: Each node v executes M := N(v);foreach receive(w, m) do $| M := M \setminus \{w\}$ if $M \neq N(v)$ then forall $u \in M$ do send(u, m);



Results

Theorem

Let G = (V, E) be a connected graph and $S \subseteq V$. Algorithm A_{SF} is truly stateless, distributes a message stored at the nodes of S to all nodes, and terminates after $d_G(S, V) + 1$ rounds.

Results

Definition

Denote by $SF_G(S)$ the number of rounds algorithm \mathcal{A}_{SF} requires to terminate for graph *G* when started by all nodes in *S*. For $k \leq n$ define

$$SF_k(G) = \min\{SF_G(S) \mid S \subseteq V \text{ with } |S| = k\}.$$

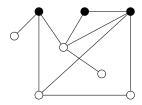
Theorem

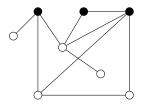
Let *G* be a connected graph with n > 2 and k < n. Then $SF_k(G) = r_k(G) + 1$. In particular $SF_1(G) = Rad(G) + 1$.

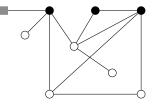
Results

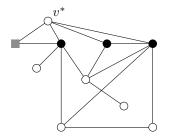
Theorem

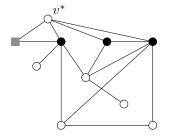
The time complexity of A_{SF} is optimal unless G is bipartite with $V = V_1 \cup V_2$ such that V_1 or V_2 contains a k-center. In this case A_{AF} requires one round less.

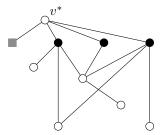


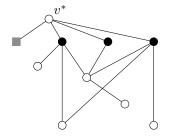


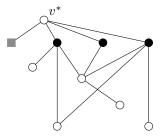


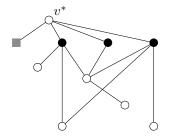


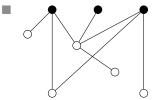




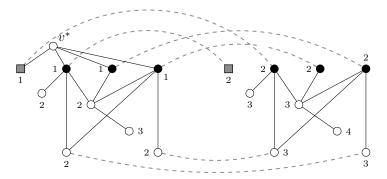








Auxiliary graph \hat{G}



- Auxiliary graph \hat{G} is bipartite
- Execution of A_{SF} on G with initiators S is equivalent to execution of A_{AF} on auxiliary graph Ĝ with initiator v*
- \mathcal{A}_{SF} terminates after $\epsilon_{\hat{G}}(v^*) = d_G(S, V) + 1$ rounds

Asynchronous Stateless Information Dissemination

1-stateless Information Dissemination

Theorem

There is no deterministic 1-stateless information dissemination algorithm for asynchronous systems.

Sketch of Proof.

Let \mathcal{A} be a 1-stateless information dissemination algorithm that can update up to d bits in each message

- Let *G* be a graph that has a node v_0 with $\epsilon_G(v_0) > 2^d$
- Consider execution of A with initiator v_0
- There exists a message flow $S: v_0 \xrightarrow{m_0} v_1 \xrightarrow{m_1} v_2 \xrightarrow{m_2} \dots$ with nodes v_0, v_1, \dots and $v_i \in N(v_{i+1})$ such that v_i sends a message to v_{i+1} as a reaction of receiving a message from v_{i-1}

1-stateless Information Dissemination

Proof ctd.

- Length of S is greater than 2^d
- Thus, there are two nodes v_s and v_t in this flow with s < t which receive identical messages</p>
- Hence, as a reaction they also send identical messages
- Thus, \mathcal{S} is infinite. This yields that \mathcal{A} does not terminate
- Contradiction

log n-stateless Information Dissemination

Theorem

There exists a log n-stateless information dissemination algorithm for asynchronous systems terminating in n^{c+1} rounds provided each node has a unique identifier in the range $0, \ldots, n^c$ with $c \ge 1$.

- Each message consists of two values each of size O(log n)
- Originator v₀ sends pair (v₀.id, v₀.id) to all neighbors
- If v receives a message (a, b):
 - If v.id > a then v sends (v.id, v.id) to all neighbors except the one from which message came
 - If *v*.*id* < *a* and *b* ≠ 0 then *v* sends (*a*, *b* − 1) to all neighbors except the one from which message came

log n-stateless Information Dissemination

Proof ctd.

- Assume information does not reach all nodes
- Among uninformed nodes choose v such that d(v, S) is minimal
- Let $w \in N(v)$ such that d(w, S) < d(v, S)
- Then w is informed with a message (a, 0) and a > w.id otherwise v would be informed
- Consider a shortest path from the node u with u.id = a to w
- Since u sent messages (a, a) the second component was a-times decreased by nodes with an id less than a
- Thus, there must be a + 1 nodes with an id less than a
- Contradiction

Conclusion

Conclusion & Outlook

- Optimal truly stateless information dissemination algorithm with k initiators for synchronous systems
- Algorithm terminates in $r_k(G) + 1$ rounds
- Unless P = NP there is no approximation algorithm for the SF-problem with an approximation ratio less than 3/2
- Open problems:
 - Design a 3/2-approximation or disprove its existence
 - Number of messages of proposed log *n*-stateless information dissemination algorithm grows exponentially with *n*: Design more efficient algorithm
 - ◆ (Dis)Prove: There exits a deterministic *f*(*n*)-stateless asynchronous information dissemination algorithm with *f* ∈ *o*(log *n*)

Stateless Information Dissemination Algorithms

27th Int. Colloquium on Struc

Volker Turau

Volker Turau

Professor

Phone +49 / (0)40 428 78 3530 e-Mail turau@tuhh.de

http://www.ti5.tu-harburg.de/staff/turau

lexity

TUHH

Institute of Telematics Hamburg University of Technology