

Florian Meyer and Volker Turau

KuVS Fachgespräche: Machine Learning & Networking February 20th, 2020

Institute of Telematics Hamburg University of Technology TUHH

Motivation

- Increased adoption of WSNs in industrial environments (IIoT)
- Many IIoT applications have tight delay constraints
- Existing protocols (CSMA, IEEE 802.15.4, ...) not suitable
- The Deterministic and Synchronous Multi-Channel Extension (DSME) increases robustness, reliability and scalability:
 - TDMA-based medium access
 - Channel diversity
 - Distributed slot negotiation at runtime

Motivation

- Increased adoption of WSNs in industrial environments (IIoT)
- Many IloT applications have tight delay constraints
- Existing protocols (CSMA, IEEE 802.15.4, ...) not suitable
- The Deterministic and Synchronous Multi-Channel Extension (DSME) increases robustness, reliability and scalability:
 - TDMA-based medium access
 - Channel diversity
 - Distributed slot negotiation at runtime

 \Rightarrow Find a scheduling strategy for DSME that minimizes global delay using Reinforcement Learning

- CAP: Contention access period
- GTS: Guaranteed time slot

CFP: Contention free period

CAP: Contention access period

GTS: Guaranteed time slot

CFP: Contention free period

CAP: Contention access period

GTS: Guaranteed time slot

CFP: Contention free period

- CAP: Contention access period
- GTS: Guaranteed time slot

CFP: Contention free period

K: number of GTS per Multi-Superframe

Schedule Definition

Schedule

A schedule is an assignment of GTS with specific times and frequencies to pairs of communicating nodes.

Scheduling restrictions:

- In each slot a node can either send a single packet to its parent or receive a single packet from a child, not both.
- A node can only receive a packet from a single child in a slot. Several packets from different children collide and are corrupted.
- 3. If in a slot a node v_i sends a packet, its neighbors can only use different channels of the same time slot.

- \blacksquare Sink v_0
- Every node v_i generates δ_i packets per second
- Generation time τ_j of every packet p_j is known
- Delay of packet p_i : $\phi_i \tau_i$

- Sink v₀
- Every node v_i generates δ_i packets per second
- Generation time τ_j of every packet p_j is known
- Delay of packet p_j : $\phi_j \tau_j$

Find a schedule θ as

$$rg \min_{ heta} \sum_{p_j} \phi_j - au_j$$

- Sink v₀
- Every node v_i generates δ_i packets per second
- Generation time τ_j of every packet p_j is known
- Delay of packet p_j : $\phi_j \tau_j$

Find a schedule θ as

$$rg \min_{ heta} \sum_{p_j} \phi_j - au_j$$

- Sink v₀
- Every node v_i generates δ_i packets per second
- Generation time τ_j of every packet p_j is known
- Delay of packet p_j : $\phi_j \tau_j$

Find a schedule θ as

$$\operatorname{arg\,min}_{\theta}\sum_{p_{j}}\phi_{j}- au_{j}$$

- Sink v₀
- Every node v_i generates δ_i packets per second
- Generation time τ_j of every packet p_j is known
- Delay of packet p_j : $\phi_j \tau_j$

Find a schedule θ as

$$arg min_{\theta} \sum_{p_i} \phi_j - \tau_j$$

⇒ Solvable using LPs but too complex

environment

(agent)

Agent:

- Deep Neural Network (DNN) as scheduler
- Distributed to every node

Environment:

- Network simulation too slow
- ⇒ Simplified model
- \Rightarrow Time on slot basis

State:

- combined Tx-slots of children
- Tx/Rx-slots of parent
- Tx-slots of neighbors
- lacksquare δ_i
- queue level
- own schedule
- current slot number
- ⇒ No communication overhead

Actions:

- K actions for allocation
- K actions for deallocation
- 1 action for do nothing

Network Architecture

Routing Tree

Tree-Structured Neural Network

- Weight sharing between DNNs
- Deep Double Q-Learning with Prioritized Experience Replay

Training

Generate random routing trees:

Execute DNN at every node:

Calculate global reward:

if not fair:

$$R = -\infty$$

else:

$$R = -(\gamma_0 \cdot d_{avg} + \gamma_1 \cdot d_{max} + \gamma_2 \cdot N_{TX})$$

 d_{avg} : average delay

d_{max}: maximum delay

N_{TX}: # Tx-slots

Discussion & Outlook

- Proposed algorithm always finds valid schedule ...
- lacksquare ... but only achieves minimum delay for small networks (N \leq 5)
- Delay diverges from minimum delay for larger number of nodes
- Other RL-algorithms were tested (Monte-Carlo, Deep Deterministic Policy Gradients, Neuroevolution)
 - Neuroevolution yields better results for larger networks
- Outlook:
 - Verification in OMNeT++ and comparison with TPS
 - Optimization for other metrics (e.g. throughput)
 - Avoid retraining for different frame lengths

Training - Extreme Cases

Extreme cases similar since bottleneck occurs at sink