Towards Delay-Minimal Scheduling through
Reinforcement Learning in IEEE 802.15.4 DSME

1% Florian Meyer
Institute of Telematics, Hamburg University of Technology
Hamburg, Germany, fl.meyer@tuhh.de

Abstract—The rise of wireless sensor networks (WSNSs) in
industrial applications imposes novel demands on existing wire-
less protocols. The deterministic and synchronous multi-channel
extension (DSME) is a recent amendment to the IEEE 802.15.4
standard, which aims for highly reliable, deterministic traffic
in these industrial environments. It offers TDMA-based channel
access, where slots are allocated in a distributed manner. In this
work, we propose a novel scheduling algorithm for DSME which
minimizes the delay in time-critical applications by employing
reinforcement learning (RL) on deep neural networks (DNN).

I. INTRODUCTION

Recently, WSNs have experienced an increased adoption in
industrial applications due to their ease of deployment and
cost-efficiency. These applications place strict requirements
on the reliability and timeliness of the wireless transmission
protocol. Therefore, the IEEE 802.15.4 standard was extended
by a number of substandards, DSME amongst others, in
2015 to increase robustness and determinism in industrial
environments [1]. DSME offers MF-TDMA-based channel
access and features a distributed slot negotiation mecha-
nism. Therefore, distributed scheduling is a natural choice for
DSME. Traffic-Aware and Predictive Scheduling (TPS) is the
default distributed scheduler for openDSME, an open-source
implementation of DSME [2]. It aims for maximum reliability
by utilizing an exponential moving average and a hysteresis
for overprovisioning. However, it is unsuitable for time-critical
applications because slots are placed randomly, i.e., packets
might be queued some time before being transmitted. Addi-
tionally, TPS does not consider the level of the queue but
only incoming flows. Queues can grow large, resulting in high
end-to-end delays. Therefore, this work proposes a scheduling
mechanism, utilizing machine learning, to minimize end-to-
end delay while maintaining a reliability similar to TPS.

II. DSME IN A NUTSHELL

In DSME, time is divided into a contention-access period
(CAP) and a contention-free period (CFP), as depicted in
Fig. 1. In the CAP, nodes communicate using CSMA/CA. The
CFP is further subdivided into guaranteed time slots (GTS),
which are spread over time and frequency and grant exclusive
access to the shared medium. Initially, GTS must be negotiated
between two nodes in a distributed manner using a 3-way
handshake during the CAP. The combination of a CAP with
9 time slots and a CFP with 7 time slots is called superframe

27 Volker Turau
Institute of Telematics, Hamburg University of Technology
Hamburg, Germany, turau@tuhh.de

Superframe GTS
FP CFP CFP CFP

I ICAP ICAP ICAP ICAP

Multi-Superframe Multi-Superframe

Q

Channels

Fig. 1. Frame structure of IEEE 802.15.4 DSME.

(SF). Multiple SFs are joined in a multi-superframe (MSF),
after which a schedule of allocated GTS repeats [1].

III. RELATED WORK

Liu et al. propose RL-MAC, a MAC-protocol where the
active time and sleep time of nodes is dynamically adapted
based on information inferred from other nodes in the network
[3]. They achieve high throughput and low power consump-
tion with mixed traffic conditions. Similarly, [4] proposes a
MEF-TDMA-based scheduler that avoids interference between
different wireless protocols. They show that Neural Networks
can accurately predict free slots in these scenarios.

IV. FORMAL PROBLEM DESCRIPTION

In the following, we consider converge-cast scenarios in
WSNs with arbitrary routing trees and N nodes vg, ..., Un_1.
Here, vy acts as the sink and every node v;xo generates J;
packets per second and transmits them towards vg. For this,
every second is divided into K time slots kg, ..., kx_1 with
equal length ¢t = % The generation time 7; of every packet
p; is know and lies within a time slot k;. A packet generated
in k; can be transmitted in k;,q at earliest.

A schedule @ is the assignment of a state from the set
{IDLE, TX, RX} to every slot k;; of node v;. During a TX-
slot, a node can transmit a single packet to its parent. During
an RX-slot, a node can receive a single packet from one of
its children. Let N; denote the set of neighbors of v;, i.e., the
nodes within communication range of v;. For a valid schedule,
the nodes v; € N; are not allowed to transmit in the same slot
and channel as v; since the packets would collide. The goal is
to choose 6 as arg min, Zm ¢; —T;, where ¢; is the reception
time of p; at vy. That means, it minimizes the total end-to-end
delay of the network. We call this schedule delay-minimal.

The problem description applies to TDMA systems, but also
to DSME by considering only CFP slots for scheduling. It is



Routing Tree

g
Q&

Tree-Structured Neural Network

=

DNN
() .

Fig. 2. Routing tree and resulting neural network architecture.

DNN

also possible to solve such problems with linear programs [5],
but the scalability is not sufficient for large networks.

V. SCHEDULING THROUGH REINFORCEMENT LEARNING

Designing a distributed scheduling algorithm that produces
a globally optimized schedule is a challenging task [2].
Therefore, we employ RL to let a DNN learn the desired
scheduling behavior by itself. In RL, an agent interacts with
an environment and receives rewards based on how well it
performs, e.g., the DNN learns which slots to schedule to
reduce the end-to-end delay. The resulting DNN is executed
locally at every node and the single DNNs communicate
along the edges of the routing tree. As shown in Fig. 2, this
forms a tree structured neural network, a special form of a
hierarchical neural network in which individual DNNs are
arranged in a tree. This tree is used for training, as further
explained in V-A. Weights are shared between the DNNs,
making them independent of their position in the routing tree.
Additionally, this allows adding new nodes at any position in
the tree because all DNNs behave in the same way. The goal
is emergent behavior, in which schedules produced by simple
local DNNs converge towards a globally optimized schedule.

A. DNN structure

The inputs of a DNN at v; are the combined TX-slots of
v;’s children, the TX-slots and RX-slots of its parent, the TX-
slots of all v; € N, its queue level, §;, and the current slot
number of the MSF. The outputs of the DNN correspond
to 2K + 1 actions ay,...,a2x, Where a; for 0 < i < K
allocates k;; for transmission from v; to its parent, ax;
for 0 < ¢ < K deallocates TX-slot k;; from v; to its
parent and agx corresponds to do nothing. A single action is
selected per execution. It is sufficient to only (de)allocate TX-
slots since DSME ensures that the corresponding RX-slot at
the communication partner is also (de)allocated. Additionally,
DSME automatically selects a free channel in the desired slot,
if there is any available. The DNN uses one hidden layer
with 20 neurons. At last, it must be noted that there is no
communication overhead for transmitting the input parameters
of the DNN to v;. All inputs are implicitly collected during
the distributed slot allocation process and are stored locally.

B. Reward function

The reward for a produced schedule is based on the resulting
network delay. In theory, it can be calculated using discrete-
event simulations, e.g. with OMNeT++, yielding exact delays.

However, their execution time is usually too long to be ap-
plicable. Therefore, a simplified Python model was developed
which calculates the delay for every packet in units of time
slots. For this, a random network is generated and the DNNs
of all nodes are executed. Slots are (de)allocated based on the
selected actions until all DNNs choose action asg. At this
time, the model calculates the average (d,eqr) and maximum
(dmaz) end-to-end delay. The reward R is calculated as

R:_('YO'dmean‘FrYl'd7na3:+’72'NTX); (1)

where Ntx is the total number of allocated TX-slots in the
network. N x is necessary to prevent the nodes from allocat-
ing all available slots and thus limits the energy consumption
of the resulting schedule to the required minimum.

VI. DISCUSSION

As RL algorithm, Deep Double Q-Learning with expe-
rience replay and target network is used. Initial tests with
the simplified Python model show good performance and
for environments with N < 5, the DNN scheduler achieves
minimal delay. However, increasing N to larger values results
in a rapid performance decrease, especially if the number
of children at a single node increases. Other RL algorithms
like Monte-Carlo and Deep Deterministic Policy Gradients
have been tested to solve this problem, with limited success.
Therefore, we are now looking into neuroevolution to learn
the network structure directly. This approach seems to reach
higher scalability, although verification and comparison with
TPS in openDSME and OMNeT++ are still pending. At last,
the presented DNN scheduler offers flexibility in the sense
that it only depends on the reward function, which can be
optimized for other metrics.

VII. CONCLUSION

The proposed algorithm seems promising for delay-minimal
scheduling in small networks. It is adaptable to different
network sizes and can be trained for different objectives. Initial
tests with small networks show a good performance. However,
the DNNs have to be retrained if the superframe length or
multi-superframe length changes. Avoiding this retraining is an
obvious next step. Additionally, we are looking into increasing
the overall scalability of the algorithm to large networks.

REFERENCES

[1] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), 2016.

[2] F. Kauer, “Scalable Wireless Multi-Hop Networks for Industrial Appli-
cations,” Ph.D. dissertation, Hamburg University of Technology, 2019.

[3] Z. Liu and I. Elhanany, “RL-MAC: a reinforcement learning based MAC
protocol for wireless sensor networks,” International Journal of Sensor
Networks, vol. 1, no. 3-4, pp. 117-124, 2006.

[4] R. Mennes, M. Camelo, M. Claeys, and S. Latre, “A Neural-Network-
based MF-TDMA MAC Scheduler for Collaborative Wireless Networks,”
in 2018 IEEE Wireless Communications and Networking Conference
(WCNC). 1IEEE, 2018, pp. 1-6.

[5] F. Meyer and V. Turau, “Delay-Bounded Scheduling in IEEE 802.15.
4e DSME Using Linear Programming,” in 2019 15th International Con-
ference on Distributed Computing in Sensor Systems (DCOSS). 1EEE,
2019, pp. 659-666.



