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� For many classical problems known distributed algorithms are
faster by orders of magnitude than self-stabilizing algorithms

� Majority of self-stabilizing algorithms has stabilization time of Θ(n)
� O(log n) or even O(log∗ n) are common for distributed algorithms

� Question:
Is it possible to close the performance gap between general
distributed algorithms and self-stabilizing algorithms or does there
exist an inherent barrier?
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State of the Art

� Self-stabilizing algorithms with sublinear run-time
� Barenboim et al. (2018): ∆ + 1 coloring, 2∆ + 1 edge-coloring,

maximal independent set, maximal matching in O(∆ + log∗ n)
rounds

� T. (2018): ∆ + 1 coloring in O(log n) rounds w.h.p.
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Making Distributed Algorithms Self-Stabilizing

� Program transformation techniques can make local algorithms
self-stabilizing (Afek (1997), Awerbuch(1994), Lenzen (2009))

� Proof labeling schemes, self-stabilizing reset algorithms

� Disadvantage: Overhead in run-time or memory consumption

� Many techniques cannot be applied to randomized algorithms

� Topic of this work:
How to transform phase-oriented distributed algorithms into
self-stabilizing algorithms without overhead?

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 55



IntroductionIntroduction

Contribution

� Randomized self-stabilizing algorithms for maximal independent
set and maximal matching stabilizing w.h.p. in O(log n) rounds in
the synchronous model
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Phase-Oriented Algorithms

� Phase-Oriented algorithms in synchronous model
� A phase consists of a fixed number of rounds
� Phases are executed periodically
� Nodes perform a dedicated task in each round of a phase

� Faults can have devastating consequences
� Some nodes may be still in the first round of a phase, others

already in the second round, etc.
� In such a scenario, phase-oriented algorithms will produce incorrect

results
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Self-stabilizing Synchronous Unison

� Implementation of phases in a synchronous system is based on a
synchronized counter variable

� Counter makes nodes round- and phase-aware
� Self-stabilizing algorithm must handle faults hitting counter

� Thus, phase-oriented self-stabilizing algorithms require a
self-stabilizing counter

� Self-stabilizing synchronous unison
� Existing algorithms require Ω(Diam(G)) rounds to stabilize

� To achieve O(log n) run-time an approach that relinquishes the
phase concept is required
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Approach

� Each node continuously and independently performs its original
actions but not necessarily in the original order

� Thus, nodes execute their actions no longer synchronized but
interleaved

� To still converge to a legitimate state, phase-dependent behavior is
mapped to a phase variable

� A node can determine from the phase variables of its neighbors its
position within a phase and act accordingly

� This way transient errors can be tolerated
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Notations & Model

� Synchronous model, locally shared memory
� A distributed algorithm is called self-stabilizing if it satisfies

� closure property and
� convergence property

� A randomized algorithm terminates w.h.p. within O(f (n)) time if it
does so with probability at least 1− 1/nc for some c > 1

� A randomized distributed algorithm is called self-stabilizing if it
satisfies closure property and w.h.p. the convergence property
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Maximal Matching

� Many self-stabilizing algorithms for maximal matching exist

� The only self-stabilizing algorithm with sublinear time is by
Barenboim et al. (2018) O(∆ + log∗ n) rounds

� Much stronger results for general distributed algorithms: Fischer
(2017) proposed an algorithm requiring O(log2(∆) log n) rounds

� This work:
We transform a randomized max. mat. algorithm of Israeli & Itai
into a self-stabilizing algorithm stabilizing w.h.p. in O(log n) rounds
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Algorithm of Israeli and Itai

� Algorithm uses phases of four rounds
Invite: Each node invites a random neighbor

Accept: Invited nodes randomly accept one invitation
I Nodes that accepted an invitation or whose invitation was accepted

form a subgraph U
I Connected components of U are paths and cycles

Peer: Each node of U selects either edge towards the accepted or to the
accepting neighbor
I Corresponding edge is called a peer

Match: Edges that were selected by both end-nodes as peers join matching

End nodes of matched edges become passive
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Variables used by AMAT

� match(false): Indicates whether node is already matched

� partner(null): Either a neighbor or null . If match = true then
edge connecting node with partner belongs to matching.
Otherwise it indicates invitation, acceptance, or peer

� phase(none): Semantics of partner
� invit : partner is invited
� accept : partner ’s invitation is accepted
� peer : edge connecting node and partner is proposed for matching
� none: No partner selected, i.e., partner = null
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Algorithm AMAT

� Locally detected inconsistencies cause a local reset

� Nodes execute Match, Peer, Accept, Invite according to their
own phase variable and that of their neighbors

� An active node v matches its partner if edge to partner is peer for
both nodes (Match)

� An unmatched active node v randomly selects an active neighbor
w satisfying the highest option of

1. w accepted v ’s invitation or vice versa (Peer)
2. w invites v (Accept)
3. w is not a peer or accepting an invitation (Invite)
4. null
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The Three Rules of AMAT

� RESET: Corrects inconsistent states, assigns fallback values to
variables

� MATCH: Promotes nodes with match = false to match = true if
conditions are met

� RANDOM: If match = false then update variables partner and
phase as described above
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Execution of Algorithm AMAT
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Stabilization Time of AMAT

� Let Gi be the subgraph of G induced by the unmatched nodes in
round i

� Gi ⊆ Gi−1 for i > 1
� A node v of a graph is called good if it has many neighbors with

smaller degree than itself
� Idea: Good nodes have a high chance of getting invited

Lemma

Let v be a good node of Gi . The expected number of edges incident to
v in Gi not contained in Gi+4 is at least (1− e−1/6)dGi (v)/12 if i > 1.
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Stabilization Time of AMAT

Lemma (Alon et al.)

At least half of the edges of any graph are adjacent to a good node.

This proves that after expected O(log n) rounds graph Gi consists of
isolated nodes only
Apply probabilistic arguments to prove the result
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Stabilization Time of AMAT

Theorem

Algorithm AMAT is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal matching.

� AMAT exhibits more concurrency than original algorithm

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 2121



Algorithm AMATAlgorithm AMAT

Algorithm AMIS

Theorem

Algorithm AMIS is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal independent set.

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 2222



4

Conclusion



ConclusionConclusion

Conclusion & Outlook

� We demonstrated that phase-oriented randomized distributed
algorithms can be made self-stabilizing in the synchronous model
while retaining their time complexity with almost no overhead

� We transformed two classical distributed randomized graph
algorithms into self-stabilizing algorithms

� They outperform existing self-stabilizing algorithms

� Ultimate goal of this work:
Operationalize this transformation to have a tool that automatically
performs transformation for a rich class of randomized algorithms
even in asynchronous model
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