
Making Randomized Algorithms
Self-Stabilizing

Volker Turau

26th Int. Colloquium on Structural Information and Communication Complexity

July 2nd, 2019

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology



1

Introduction



IntroductionIntroduction

� For many classical problems known distributed algorithms are
faster by orders of magnitude than self-stabilizing algorithms

� Majority of self-stabilizing algorithms has stabilization time of Θ(n)
� O(log n) or even O(log∗ n) are common for distributed algorithms

� Question:
Is it possible to close the performance gap between general
distributed algorithms and self-stabilizing algorithms or does there
exist an inherent barrier?

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 33



IntroductionIntroduction

State of the Art

� Self-stabilizing algorithms with sublinear run-time
� Barenboim et al. (2018): ∆ + 1 coloring, 2∆ + 1 edge-coloring,

maximal independent set, maximal matching in O(∆ + log∗ n)
rounds

� T. (2018): ∆ + 1 coloring in O(log n) rounds w.h.p.

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 44



IntroductionIntroduction

Making Distributed Algorithms Self-Stabilizing

� Program transformation techniques can make local algorithms
self-stabilizing (Afek (1997), Awerbuch(1994), Lenzen (2009))

� Proof labeling schemes, self-stabilizing reset algorithms

� Disadvantage: Overhead in run-time or memory consumption

� Many techniques cannot be applied to randomized algorithms

� Topic of this work:
How to transform phase-oriented distributed algorithms into
self-stabilizing algorithms without overhead?

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 55



IntroductionIntroduction

Contribution

� Randomized self-stabilizing algorithms for maximal independent
set and maximal matching stabilizing w.h.p. in O(log n) rounds in
the synchronous model

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 66



2

Phase-Oriented Distributed Algorithms



Phase-Oriented Distributed AlgorithmsPhase-Oriented Distributed Algorithms

Phase-Oriented Algorithms

� Phase-Oriented algorithms in synchronous model
� A phase consists of a fixed number of rounds
� Phases are executed periodically
� Nodes perform a dedicated task in each round of a phase

� Faults can have devastating consequences
� Some nodes may be still in the first round of a phase, others

already in the second round, etc.
� In such a scenario, phase-oriented algorithms will produce incorrect

results

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 88



Phase-Oriented Distributed AlgorithmsPhase-Oriented Distributed Algorithms

Self-stabilizing Synchronous Unison

� Implementation of phases in a synchronous system is based on a
synchronized counter variable

� Counter makes nodes round- and phase-aware
� Self-stabilizing algorithm must handle faults hitting counter

� Thus, phase-oriented self-stabilizing algorithms require a
self-stabilizing counter

� Self-stabilizing synchronous unison
� Existing algorithms require Ω(Diam(G)) rounds to stabilize

� To achieve O(log n) run-time an approach that relinquishes the
phase concept is required

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 99



Phase-Oriented Distributed AlgorithmsPhase-Oriented Distributed Algorithms

Approach

� Each node continuously and independently performs its original
actions but not necessarily in the original order

� Thus, nodes execute their actions no longer synchronized but
interleaved

� To still converge to a legitimate state, phase-dependent behavior is
mapped to a phase variable

� A node can determine from the phase variables of its neighbors its
position within a phase and act accordingly

� This way transient errors can be tolerated

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1010



Phase-Oriented Distributed AlgorithmsPhase-Oriented Distributed Algorithms

Notations & Model

� Synchronous model, locally shared memory
� A distributed algorithm is called self-stabilizing if it satisfies

� closure property and
� convergence property

� A randomized algorithm terminates w.h.p. within O(f (n)) time if it
does so with probability at least 1− 1/nc for some c > 1

� A randomized distributed algorithm is called self-stabilizing if it
satisfies closure property and w.h.p. the convergence property

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1111



3

Algorithm AMAT



Algorithm AMATAlgorithm AMAT

Maximal Matching

� Many self-stabilizing algorithms for maximal matching exist

� The only self-stabilizing algorithm with sublinear time is by
Barenboim et al. (2018) O(∆ + log∗ n) rounds

� Much stronger results for general distributed algorithms: Fischer
(2017) proposed an algorithm requiring O(log2(∆) log n) rounds

� This work:
We transform a randomized max. mat. algorithm of Israeli & Itai
into a self-stabilizing algorithm stabilizing w.h.p. in O(log n) rounds

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1313



Algorithm AMATAlgorithm AMAT

Algorithm of Israeli and Itai

� Algorithm uses phases of four rounds
Invite: Each node invites a random neighbor

Accept: Invited nodes randomly accept one invitation
I Nodes that accepted an invitation or whose invitation was accepted

form a subgraph U
I Connected components of U are paths and cycles

Peer: Each node of U selects either edge towards the accepted or to the
accepting neighbor
I Corresponding edge is called a peer

Match: Edges that were selected by both end-nodes as peers join matching

End nodes of matched edges become passive

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1414



Algorithm AMATAlgorithm AMAT

Variables used by AMAT

� match(false): Indicates whether node is already matched

� partner(null): Either a neighbor or null . If match = true then
edge connecting node with partner belongs to matching.
Otherwise it indicates invitation, acceptance, or peer

� phase(none): Semantics of partner
� invit : partner is invited
� accept : partner ’s invitation is accepted
� peer : edge connecting node and partner is proposed for matching
� none: No partner selected, i.e., partner = null

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1515



Algorithm AMATAlgorithm AMAT

Algorithm AMAT

� Locally detected inconsistencies cause a local reset

� Nodes execute Match, Peer, Accept, Invite according to their
own phase variable and that of their neighbors

� An active node v matches its partner if edge to partner is peer for
both nodes (Match)

� An unmatched active node v randomly selects an active neighbor
w satisfying the highest option of

1. w accepted v ’s invitation or vice versa (Peer)
2. w invites v (Accept)
3. w is not a peer or accepting an invitation (Invite)
4. null

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1616



Algorithm AMATAlgorithm AMAT

The Three Rules of AMAT

� RESET: Corrects inconsistent states, assigns fallback values to
variables

� MATCH: Promotes nodes with match = false to match = true if
conditions are met

� RANDOM: If match = false then update variables partner and
phase as described above

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1717



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4
I

I

I

I

I

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

A

A

A

I

I

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

P

P

P

I
A

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4
I

I

P
P

N

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4

I

I I

P
P

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4

I

A

A

P
P

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4

P

PP

P
P

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4v1

v2

PP

P
P

N

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4v1

v2

PA

P
P

N

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4P
P

N

N

N

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Execution of Algorithm AMAT

v0

v1

v3

v2

v4

v0

v4

II

P
P

I

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1818



Algorithm AMATAlgorithm AMAT

Stabilization Time of AMAT

� Let Gi be the subgraph of G induced by the unmatched nodes in
round i

� Gi ⊆ Gi−1 for i > 1
� A node v of a graph is called good if it has many neighbors with

smaller degree than itself
� Idea: Good nodes have a high chance of getting invited

Lemma

Let v be a good node of Gi . The expected number of edges incident to
v in Gi not contained in Gi+4 is at least (1− e−1/6)dGi (v)/12 if i > 1.

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 1919



Algorithm AMATAlgorithm AMAT

Stabilization Time of AMAT

Lemma (Alon et al.)

At least half of the edges of any graph are adjacent to a good node.

This proves that after expected O(log n) rounds graph Gi consists of
isolated nodes only
Apply probabilistic arguments to prove the result

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 2020



Algorithm AMATAlgorithm AMAT

Stabilization Time of AMAT

Theorem

Algorithm AMAT is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal matching.

� AMAT exhibits more concurrency than original algorithm

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 2121



Algorithm AMATAlgorithm AMAT

Algorithm AMIS

Theorem

Algorithm AMIS is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal independent set.

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 2222



4

Conclusion



ConclusionConclusion

Conclusion & Outlook

� We demonstrated that phase-oriented randomized distributed
algorithms can be made self-stabilizing in the synchronous model
while retaining their time complexity with almost no overhead

� We transformed two classical distributed randomized graph
algorithms into self-stabilizing algorithms

� They outperform existing self-stabilizing algorithms

� Ultimate goal of this work:
Operationalize this transformation to have a tool that automatically
performs transformation for a rich class of randomized algorithms
even in asynchronous model

Volker Turau Making Randomized Algorithms Self-StabilizingVolker Turau Making Randomized Algorithms Self-Stabilizing 2424



Making Randomized Algorithms
Self-Stabilizing

Volker Turau

26th Int. Colloquium on Structural Information and Communication Complexity

July 2nd, 2019

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology

Volker Turau
Professor

Phone +49 / (0)40 428 78 3530

e-Mail turau@tuhh.de

http://www.ti5.tu-harburg.de/staff/turau

mailto:turau@tuhh.de
http://www.ti5.tu-harburg.de/staff/turau

	Introduction
	Phase-Oriented Distributed Algorithms
	Algorithm A浡琠hsf allowed only in math modeMAT
	Conclusion

