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Introduction

B For many classical problems known distributed algorithms are
faster by orders of magnitude than self-stabilizing algorithms

# Majority of self-stabilizing algorithms has stabilization time of @(n)
¢ O(log n) or even O(log* n) are common for distributed algorithms

B Question:
Is it possible to close the performance gap between general
distributed algorithms and self-stabilizing algorithms or does there
exist an inherent barrier?
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Introduction

State of the Art

B Self-stabilizing algorithms with sublinear run-time
¢ Barenboim et al. (2018): A + 1 coloring, 2A + 1 edge-coloring,
maximal independent set, maximal matching in O(A + log* n)
rounds
¢ T.(2018): A + 1 coloring in O(log n) rounds w.h.p.
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Introduction

Making Distributed Algorithms Self-Stabilizing

B Program transformation techniques can make local algorithms
self-stabilizing (Afek (1997), Awerbuch(1994), Lenzen (2009))

¢ Proof labeling schemes, self-stabilizing reset algorithms
B Disadvantage: Overhead in run-time or memory consumption
B Many techniques cannot be applied to randomized algorithms

B Topic of this work:
How to transform phase-oriented distributed algorithms into
self-stabilizing algorithms without overhead?
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Contribution

B Randomized self-stabilizing algorithms for maximal independent
set and maximal matching stabilizing w.h.p. in O(log n) rounds in
the synchronous model
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Phase-Oriented Distributed Algorithms

Phase-Oriented Algorithms

B Phase-Oriented algorithms in synchronous model

¢ A phase consists of a fixed number of rounds

¢ Phases are executed periodically

¢ Nodes perform a dedicated task in each round of a phase

B Faults can have devastating consequences

¢ Some nodes may be still in the first round of a phase, others
already in the second round, etc.

¢ In such a scenario, phase-oriented algorithms will produce incorrect
results
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Phase-Oriented Distributed Algorithms

Self-stabilizing Synchronous Unison

B Implementation of phases in a synchronous system is based on a
synchronized counter variable
¢ Counter makes nodes round- and phase-aware
¢ Self-stabilizing algorithm must handle faults hitting counter
B Thus, phase-oriented self-stabilizing algorithms require a
self-stabilizing counter
¢ Self-stabilizing synchronous unison
# Existing algorithms require ()(Diam(G)) rounds to stabilize
B To achieve O(log n) run-time an approach that relinquishes the
phase concept is required
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Phase-Oriented Distributed Algorithms

Approach

B Each node continuously and independently performs its original
actions but not necessarily in the original order

B Thus, nodes execute their actions no longer synchronized but
interleaved

B To still converge to a legitimate state, phase-dependent behavior is
mapped to a phase variable
¢ A node can determine from the phase variables of its neighbors its
position within a phase and act accordingly

B This way transient errors can be tolerated
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Phase-Oriented Distributed Algorithms

Notations & Model

B Synchronous model, locally shared memory
B A distributed algorithm is called self-stabilizing if it satisfies
¢ closure property and
* convergence property
B A randomized algorithm terminates w.h.p. within O(f(n)) time if it
does so with probability at least 1 — 1/n°® for some ¢ > 1
B A randomized distributed algorithm is called self-stabilizing if it
satisfies closure property and w.h.p. the convergence property
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Algorithm Awar

Maximal Matching

B Many self-stabilizing algorithms for maximal matching exist
B The only self-stabilizing algorithm with sublinear time is by
Barenboim et al. (2018) O(A + log* n) rounds

B Much stronger results for general distributed algorithms: Fischer
(2017) proposed an algorithm requiring O(log?(A) log n) rounds

B This work:
We transform a randomized max. mat. algorithm of Israeli & ltai
into a self-stabilizing algorithm stabilizing w.h.p. in O(log n) rounds
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Algorithm of Israeli and Itai

B Algorithm uses phases of four rounds

Invite: Each node invites a random neighbor
Accept: Invited nodes randomly accept one invitation

> Nodes that accepted an invitation or whose invitation was accepted
form a subgraph U
> Connected components of U are paths and cycles

Peer: Each node of U selects either edge towards the accepted or to the
accepting neighbor
» Corresponding edge is called a peer
Match: Edges that were selected by both end-nodes as peers join matching

End nodes of matched edges become passive
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Variables used by Apar

B match(false): Indicates whether node is already matched

B partner(null): Either a neighbor or null. If match = true then
edge connecting node with partner belongs to matching.
Otherwise it indicates invitation, acceptance, or peer

B phase(none): Semantics of partner

¢ invit: partner is invited

¢ accept: partner’s invitation is accepted

¢ peer: edge connecting node and partner is proposed for matching
¢ none: No partner selected, i.e., partner = null
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Algorithm Amat

B |ocally detected inconsistencies cause a local reset

B Nodes execute Match, Peer, Accept, Invite according to their
own phase variable and that of their neighbors

B An active node v matches its partner if edge to partner is peer for
both nodes (Match)
B An unmatched active node v randomly selects an active neighbor
w satisfying the highest option of
1. w accepted v’s invitation or vice versa (Peer)
2. winvites v (Accept)
3. wis not a peer or accepting an invitation (Invite)
4. null

Volker Turau Making Randomized Algorithms Self-Stabilizing



Algorithm Awar

The Three Rules of Ayar

B RESET: Corrects inconsistent states, assigns fallback values to
variables

B MATCH: Promotes nodes with match = false to match = true if
conditions are met

B RANDOM: If match = false then update variables partner and
phase as described above

Volker Turau Making Randomized Algorithms Self-Stabilizing



Algorithm Awar

Execution of Algorithm Ayt
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Execution of Algorithm Ayt
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Execution of Algorithm Ayt
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Execution of Algorithm Ayt
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Stabilization Time of Ayar

B et G; be the subgraph of G induced by the unmatched nodes in
round i
B G CGi_qfori>1
B A node v of a graph is called good if it has many neighbors with
smaller degree than itself
¢ |dea: Good nodes have a high chance of getting invited

Let v be a good node of Gj. The expected number of edges incident to
v in G; not contained in G4 4 is at least (1 — e~ '/®)dg, (v) /12 if i > 1.
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Stabilization Time of Ayar

Lemma (Alon et al.)

At least half of the edges of any graph are adjacent to a good node.

This proves that after expected O(log n) rounds graph G; consists of

isolated nodes only
Apply probabilistic arguments to prove the result
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Stabilization Time of Ayar

Algorithm Awar is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal matching.

B A7 exhibits more concurrency than original algorithm
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Algorithm Awmis

Algorithm Aws is self-stabilizing and computes w.h.p. in O(log n)
rounds using O(log n) memory a maximal independent set.
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Conclusion & Outlook

B We demonstrated that phase-oriented randomized distributed
algorithms can be made self-stabilizing in the synchronous model
while retaining their time complexity with almost no overhead

B We transformed two classical distributed randomized graph
algorithms into self-stabilizing algorithms

B They outperform existing self-stabilizing algorithms

B Ultimate goal of this work:

Operationalize this transformation to have a tool that automatically

performs transformation for a rich class of randomized algorithms
even in asynchronous model
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