

Florian Meyer and Volker Turau

ISIoT 2019 May 29th, 2019

Institute of Telematics Hamburg University of Technology

TUHH

Motivation

- Wireless sensor networks experience increased adoption in industrial environments (IIoT)
- Many IIoT applications have tight delay constraints
- Existing protocols (CSMA, IEEE 802.15.4, ...) are not suitable
- The Deterministic and Synchronous Multi-Channel Extension (DSME) increases robustness, reliability and scalability:
 - TDMA-based medium access
 - Channel diversity
 - Distributed slot negotiation
 - Adaption to dynamically changing traffic

Motivation

- Wireless sensor networks experience increased adoption in industrial environments (IIoT)
- Many IIoT applications have tight delay constraints
- Existing protocols (CSMA, IEEE 802.15.4, ...) are not suitable
- The Deterministic and Synchronous Multi-Channel Extension (DSME) increases robustness, reliability and scalability:
 - TDMA-based medium access
 - Channel diversity
 - Distributed slot negotiation
 - Adaption to dynamically changing traffic
- \Rightarrow This work covers different scheduling strategies for DSME and provides results as a reference

CAP: Contention access period

GTS: Guaranteed time slot

CFP: Contention free period

CAP: Contention access period

GTS: Guaranteed time slot

CFP: Contention free period

- CAP: Contention access period
- GTS: Guaranteed time slot

CFP: Contention free period

- CAP: Contention access period
- GTS: Guaranteed time slot

CFP: Contention free period

Parameters:

superframe order (SO) - length of a slot / superframe multi-superframe order (MO) - length of a multi-superframe

- CAP: Contention access period
- GTS: Guaranteed time slot

CFP: Contention free period

Parameters:

superframe order (SO) - length of a slot / superframe multi-superframe order (MO) - length of a multi-superframe

> $7*2^{MO-SO}$ time slots per MSF:

Challenges

Challenge 1:

Finding the data throughput limit of DSME for a given convergecast scenario.

Challenges

Challenge 1:

Finding the data throughput limit of DSME for a given convergecast scenario.

Challenge 2:

Many existing scheduling protocols cannot be applied to DSME because of its special frame structure.

Challenges

Challenge 1:

Finding the data throughput limit of DSME for a given convergecast scenario.

Challenge 2:

Many existing scheduling protocols cannot be applied to DSME because of its special frame structure.

Challenge 3:

There is currently no bound for the worst-case delay in DSME.

Scheduling Requirements

Convergecast scenarios with routing tree:

- In each slot a node can either send a single packet to its parent or receive a single packet from a child, not both.
- A node can only receive a packet from a single child in a slot. Several packets from different children collide and are corrupted.
- If in a slot a node v_i sends a packet, its neighbors can only use different channels of the same time slot.

Maximum Packet Generation Rate (\mathcal{LP}_1)

$$x_{ik} = \begin{cases} 1, k \text{ is a transmission slot from } v_i \text{ to its parent} \\ 0, \text{ otherwise.} \end{cases}$$

$$\forall_{i,k}: \quad x_{ik} + x_{N_i^+k} + \sum_{j \in N_i^-} x_{jk} \le 1$$

$$\forall_i: \quad \gamma_i \times \delta \le \sum_k x_{ik}$$

$$\forall_{i,k}: \sum_{j\in I_i} x_{jk} \leq |C|$$

 N_i^+ : parent of node v_i

 N_i^- : set of children of node v_i

 γ_i : number of nodes in subtree

with root v_i

 δ : number of packets per second

 I_i : nodes in interference range of v_i

|C|: number of channels

The objective function is

 $\mathcal{O}_{\mathsf{1}}: \mathsf{max}\ \delta$

Disallow two consecutive transmission slots

$$\Rightarrow \forall_{i,k}: \quad x_{ik} + x_{i(k+1)\%K} \leq 1$$

K : total number of time slots

Disallow two consecutive transmission slots

$$\Rightarrow \forall_{i,k}: \quad x_{ik} + x_{i(k+1)\%K} \leq 1$$

K: total number of time slots

■ Transmission slot directly after reception slot

■ Transmission slot directly after reception slot

$$\Rightarrow \forall_{i,k}:$$
 $u_i + x_{i(k+1)} \ge \sum_{j \in N_i^-} x_{jk}$ $O_2:$ $\min \sum_{j \in N_i} u_j$

with u_i : binary variable for all $v_i \neq v_0$

■ Transmission slot directly after reception slot

$$\Rightarrow \forall_{i,k}: \qquad u_i + x_{i(k+1)} \geq \sum_{j \in N_i^-} x_{jk}$$

 O_2 : min $\sum_i \iota_i$

■ Transmission slot directly after reception slot

 $\Rightarrow \mathcal{LP}_4$ avoids scheduling over CAPs

Experimental Setup

- Multi-line topology without interference between branches
- Poisson-distributed traffic with $\delta = 5/6$, MO = 6, SO = 3
- Schedules calculated for δ = 1 (over-provisioning)
- Simulations conducted with OMNeT++ and openDSME

Queue Level

Maximum end-to-end delay

Conclusion & Outlook

- Formulation of different scheduling strategies as linear programs
- Comparison with state-of-the-art scheduling strategies
- Practical tool for the realization of data collection tasks requiring delay bounds, e.g.:
 - For 46 nodes, sampling frequency 1 Hz, sampling resolution 100 bytes: Guaranteed packet delivery in 10.97 seconds
- Future work
 - Hybrid algorithm which performs better at startup
 - More efficient algorithm for scheduling (machine learning?)

Institute of Telematics Hamburg University of Technology **TUHH**

DSME Parameter Selection

	MO - SO = 1			MO - SO = 2		
	<i>SO</i> = 1	<i>SO</i> = 2	<i>SO</i> = 3	<i>SO</i> = 1	<i>SO</i> = 2	<i>SO</i> = 3
D _S [ms]	1.92	3.84	7.68	1.92	3.84	7.68
max. packet size [byte]	18	66	116	18	66	116
D _{MF} (length of MSF) [ms]	61.44	122.88	245.76	122.88	245.76	491.52
number of GTS (per second)						
without CAP-reduction	14 (224)	14 (112)	14 (56)	28 (224)	28 (112)	28 (56)
with CAP-reduction	22 (352)	22 (176)	22 (88)	52 (416)	52 (208)	52 (104)

Execution Time

