A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(log n) Time

Volker Turau

25th Int. Colloquium on Structural Information and Communication Complexity July 19th, 2018

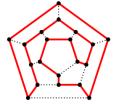
Institute of Telematics Hamburg University of Technology

TUHH

Hamiltonian Cycles

Definition (Hamiltonian Cycle)

A Hamiltonian cycle of an undirected graph G is a cycle through G that visits each node exactly once.



- Corresponding decision problem is NP-complete
- We consider random graphs

Theorem (Komlós & Szemerédi, 1983)

$$\begin{split} G(n,p) \ \textit{contains w.h.p. a Hamiltonian cycle, provided} \\ p \geq p_{\textit{crit}} = (\log n + \log \log n + \omega(n)) / n \\ \textit{where } \lim_{n \to \infty} \omega(n) = \infty. \end{split}$$

Finding Hamiltonian cycles in G(n, p)

Deterministic sequential algorithms

- Bollobás, Fenner & Frieze, 1987:
 O(n^{3+o(1)}) algorithm that works w.h.p. at threshold p_{crit}
- Frieze & Haber, 2015: $O(n^{1+o(1)})$ algorithm that works w.h.p. if $\delta(G) \ge 3$
- It is a non-local graph problem, i.e., it is required to always consider the entire graph in order to solve the problem

Finding Hamiltonian cycles in G(n, p)

Synchronous distributed algorithms

- Chatterjee et al., 2018: If $p \ge c \log n / \sqrt{n}$ then w.h.p. a Hamiltonian cycle can be found in $\tilde{O}(\sqrt{n})$ rounds
- Ghaffari and Li, 2018:

If $p \ge C \log n/n$ and nodes have unlimited memory then w.h.p. a Hamiltonian cycle can be found in $2^{O(\sqrt{\log n})}$ rounds

Our result

Theorem

Let G(n, p) with $p \ge (\log n)^{3/2} / \sqrt{n}$ be a random graph. Algorithm \mathcal{A}_{HC} computes in the synchronous model w.h.p. a Hamiltonian cycle for G terminating in $O(\log n)$ rounds. It uses messages of size $O(\log n)$ and $O(\log n)$ memory per node.

Computational Model & Assumptions

- Synchronous *CONGEST* model, i.e. messages of size *O*(log *n*)
- Each node has O(log n) local memory
- A distinguished node v₀
- Results of this work hold *with high probability* (w.h.p.) which means with probability tending to 1 as $n \rightarrow \infty$

Informal Description of $\mathcal{A}_{ m HC}$

Algorithm \mathcal{A}_{HC}

• \mathcal{A}_{HC} works in phases

- First phase (3 log n rounds)
 - Starting in v₀ a path P of length 3 log n is built
- Second phase (3 log n rounds)
 - Path P is closed to a cycle C of length at most 4 log n
- Middle phases
 - Concurrently edges are replaced by two edges
 - After 16 log *n* phases *C* has w.h.p. at least $n 3 \log n$ nodes
- Final phases
 - Each final phase integrates one node into C

Each middle and final phase lasts a constant number of rounds

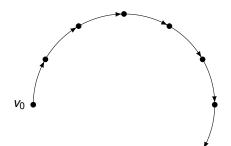
 $V_0 \bullet$

Phase 0

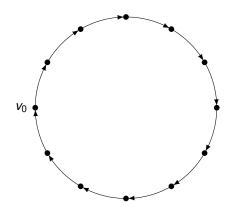
*v*₀

Phase 0

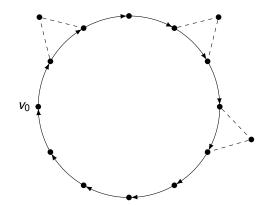
Phase 0



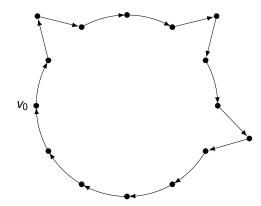
After 3 log n rounds



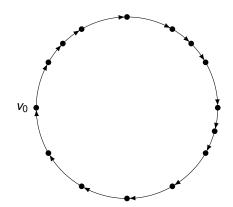
Phase 1, after another 3 log n rounds



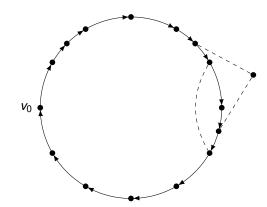
Middle Phase Step 1



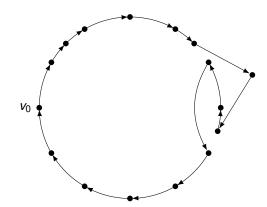
Middle Phase Step 2



After Middle Phases

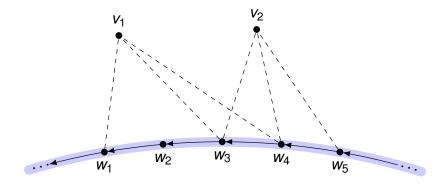


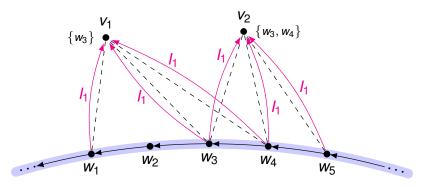
Final Phase Step 1

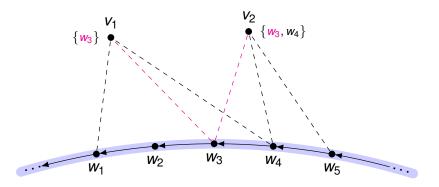


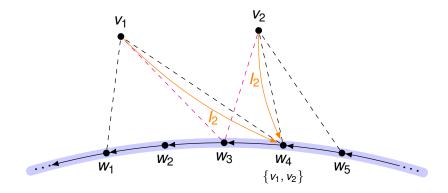
Final Phase Step 2

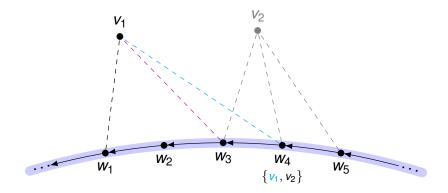
Details of \mathcal{A}_{HC}

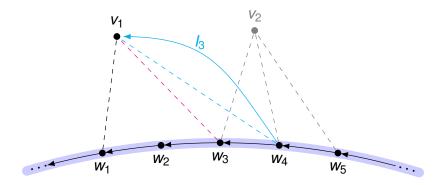


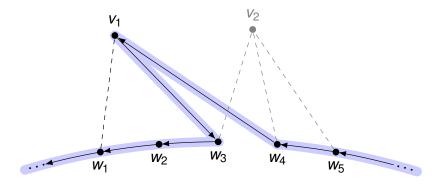






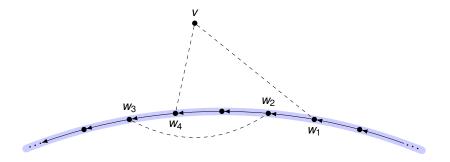


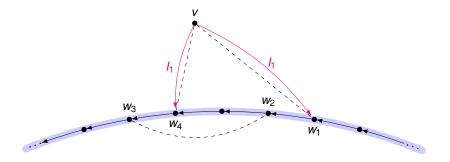


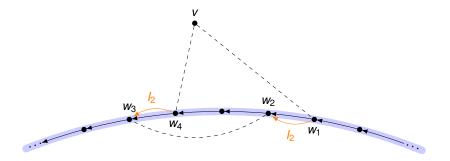


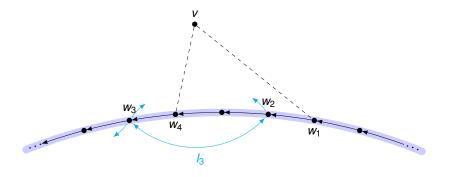
Observations

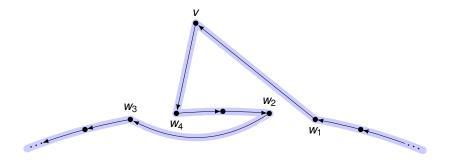
- Individual extensions do not interfere with each other because
 - Each node outside C sends in each middle phase at most one request to integrate and
 - each edge of C accepts at most one integration request
- After at most 16 log n middle phases C has w.h.p. at least n - 3 log n nodes





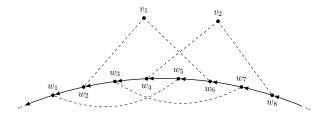


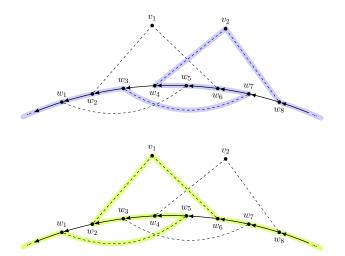


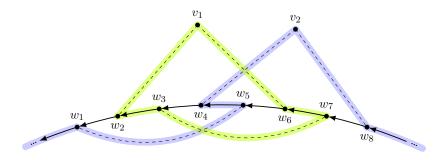


Observation 1: Integration steps cannot be executed concurrently

If segments, which are inverted overlap, separate cycles may occur

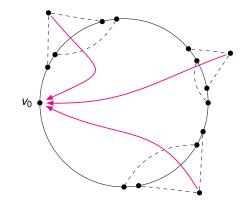


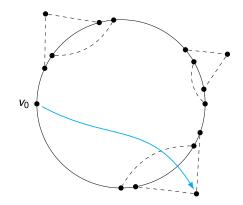


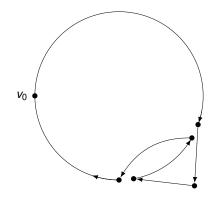


Solution:

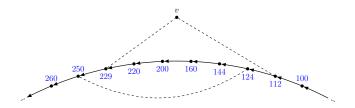
- Final phases are done sequentially
- Node v₀ acts as a coordinator
- All nodes from $V \setminus C$ that can be integrated report this to v_0
- v₀ randomly selects one node to be integrated and informs it
- This requires a short route from each node to v₀
 - A pre-processing phase builds a BFS-tree rooted in v₀
 - Note that diameter is at most 3 because $p \ge \sqrt{\log n/n}$

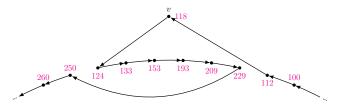






- Observation 2: Direction of Edges between w₂ and w₄ must be inverted in a constant number of rounds
 - Sequentially reversing is no option (unbounded number of edges)
- Solution
 - Nodes on C carry a number, strictly increasing beginning with v₀
 - Numbering in phases 0 and 1: n¹⁴, 2n¹⁴, 3n¹⁴, ...
 - Middle phases
 - A node integrated between nodes with numbers *l* < *r* gets number [(*l*+*r*)/2]
 - Final phases
 - After v₀ decides the node to integrate, it broadcasts numbers *I* and *r* (of w₂ and w₄) into graph
 - ► Nodes with number $l \le x \le r$ get the new number l + r x and reverse corresponding edge





Complexity of \mathcal{A}_{HC}

Preserving the Required Randomness

- Iterative algorithms on random graphs must be organized such that one only slowly uncovers the random choices in input graph
- For $\hat{p} = 1 (1 p)^{1/\gamma \log n}$ graph G(n, p) is equal to union of $\gamma \log n$ independent copies of $G(n, \hat{p})$

Since
$$\hat{p} \geq \sqrt{\log n} / \gamma \sqrt{n}$$
 we have

$$\bigcup_{i=1}^{\gamma \log n} G(n,q) \subseteq G(n,p)$$

with $q = \sqrt{\log n} / \gamma \sqrt{n}$

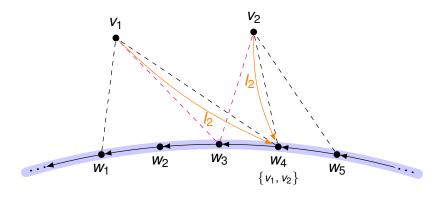
Preserving the Required Randomness

- For $i \ge 0$ let G^i be the union of *i* independent copies of G(n, q)
- Cycle C of phase i consists of edges belonging to Gⁱ
- Probability that any two nodes of V are connected with an edge from Gⁱ⁺¹ \ Gⁱ is q
- Thus, in each phase a new copy of G(n, q) is revealed

How many nodes are integrated into C per middle phase?

- How many nodes on C send an accept message I₃?
- How many nodes outside C send an invitation l₂?

• How many nodes outside C send an invitation I_2 ?



- A node v ∈ V \ C sends an invitation if it is connected to at least one pair of consecutive nodes on C
- **This event has probability** q^2 , but these events are not independent
- Event π_ν: v ∈ V \ C forms a triangle with at least one of every second edge of C
- π_v has probability $1 (1 q^2)^{c/2}$ and π_v 's are independent (*c* number of nodes on *C*)

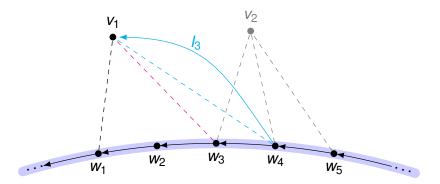
Random Variable X

X is the number of nodes v where π_v occurs

• X is a lower bound for number of nodes that send invitation I_2 .

$$E[X] = (n-c)(1-(1-q^2)^{c/2})$$
(1)

How many nodes on C send an accept message I₃?



Random variable Y

Number of nodes that are integrated into *C* in a middle phase.

- Computation of Y can be reduced to bins and balls model
 - X number of balls; c number of bins
 - Each ball is thrown randomly in any of the c bins
 - Probability that v ∈ C is connected to w in V \ C is independently of v and w equal to p.
- Y is equal to number of nonempty bins

$$E[Y|X=x] = c\left(1 - \left(1 - \frac{1}{c}\right)^x\right)$$
(2)

- We need lower bounds for X and Y
- Use Chernoff bound
- We distinguish the cases c < n/7 and $c \ge n/7$
- Reason: Variance of X behaves differently in these two ranges
 - c < n/7: Variance is rather large
 - $c \ge n/7$: Variance tends to 0

The case c < n/7

Lemma

If $3 \log n < c < n/7$ then X > c/3 w.p. $1 - 1/n^d$ for some d > 0.

Lemma

If
$$3 \log n < c < n/7$$
 then w.h.p. $\frac{Y}{c} \ge 0.92 \left(1 - \frac{1}{e^{1/3}}\right)$.

Lemma

Let C be a cycle with at least $3 \log n$ nodes. Then after at most $3 \log n$ phases C has w.h.p. at least n/7 nodes.

The case $c \ge n/7$

Lemma

Let C be a cycle with at least n/7 nodes. Then after 13 log n middle phases C has w.h.p. at least $n - 3 \log n$ nodes.

■ The last two lemma show that w.h.p. after 16 log *n* phases *C* has w.h.p. at least *n* − 3 log *n* nodes

Complexity of Final Phases

Lemma

Let $q \ge \sqrt{\log n/n}$. In each final phase w.h.p. a node $v \in V \setminus C$ is integrated into C.

Conclusion

Conclusion & Outlook

■ Algorithm \mathcal{A}_{HC} computes in $O(\log n)$ rounds w.h.p. a Hamiltonian cycle for a random graph G(n, p) provided $p \ge (\log n)^{3/2} / \sqrt{n}$

- By maxing out arguments of paper it may be possible to prove result for $p = \sqrt{\log n/n}$
- What about *p* closer to $p_{crit} = (\log n + \log \log n + \omega(n))/n$?
- Some of our arguments cannot be applied if $p = 1/\sqrt{n}$ let alone $p = p_{crit}$
- We suspect that finding a distributed $O(\log n)$ round algorithm for $p \in o(1/\sqrt{n})$ is a hard task

A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in *O*(log *n*) Time

25th Int. Colloquium on Struc

TUHH

Institute of Telematics Hamburg University of Technology