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Self-Stabilizing Systems

� Self-stabilizing systems provide non-masking fault tolerance

� Critical issue:
Length of time span and extend of disruption until full recovery

� Surprisingly complexity analysis is usually confined to worst case
stabilization time starting from an arbitrary configuration

� Considering that these systems are intended to provide fault
tolerance in the long run this is not the most relevant metric

� Practical point of view:
Single fault case is more important than arbitrary configurations!
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Metrics for Self-Stabilization

� A configuration is called k-faulty, if in a legitimate configuration
exactly k nodes are hit by a fault

� Consider a 1-faulty configuration. A self-stabilizing algorithm A
has

� contamination radius r
if only nodes within r -hop neighborhood of faulty node change state
during recovery

� containment time t
if recovery is completed in at most t rounds
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Self-Stabilizing Systems

� Why are contamination radius and containment time rarely
considered?

� Lack of techniques?
� General techniques can also applied

� Contributions
� Markov chains for computing upper bounds for expected

containment time and its variance
� Application of lumping to reduce complexity of Markov chains
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ExamplesExamples

Self-Stabilizing MIS

Algorithm 1: Self-stabilizing algorithm A1 to compute a MIS
if state = IN ∧ ∃w ∈ N(v) s.t. w .state = IN then

state := OUT
if state = OUT ∧ ∀w ∈ N(v) w .state = OUT then

if random bit from 0,1 = 1 then
state := IN

� A1 has contamination radius 2, containment time wcst(∆(G))

H

v
� 1-faulty configurations of A1 caused by a

memory corruption at v changing from IN to
OUT . Containment time is equal to worst case
stabilization time for H
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Self-Stabilizing ∆ + 1-coloring

Algorithm 2: Self-stabilizing ∆ + 1-coloring algorithm A2 [Gra00]
if c 6= max ({0, . . . , ∆}\{w .c | w ∈ N(v)}) then

if random bit from 0,1 = 1 then
c := max ({0, . . . , ∆}\{w .c | w ∈ N(v)})

� A2 has contamination radius and containment time at least ∆(G)
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If left-most node is hit by a fault and changes its color to ∆− 1, then all
nodes on horizontal line may change color
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Self-Stabilizing ∆ + 1-coloring

Algorithm 3: Self-stabilizing ∆ + 1-coloring algorithm A3.
if ∃w ∈ N(v) s.t. c = w .c then

if random bit from 0,1 = 1 then
c := choose {0, . . . , ∆}\{w .c | w ∈ N(v)}

� A3 has contamination radius 1

� What is the expected containment time?
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Markov Chains

� Let A be a self-stabilizing algorithm, Σ the set of configurations

� A can be regarded as a Markov chain CA with states Σ, where
transition probability from ci to cj is equal to Prob(A(ci) = cj)

� If L ⊂ Σ is the set of legitimate configurations of A then L is the
set of absorbing states of CA

Observation

An absorbing state of CA is reached in expected B steps if and only if A
stabilizes in expected B rounds.
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Markov Chains

� Challenges
� Complexity of Markov chain
� How to determine Prob(A(ci) = cj)?
� How to compute the expected number of steps?
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Containment Time

� Complexity of Markov chain
� Rv : Subgraph of G induced by nodes engaged in recovery process

from a 1-faulty configuration triggered by a fault at v
� Containment time of A is equal to stabilization time of A on Rv
� Often Rv is much smaller and has a simpler structure than G

� Reduction of complexity of Markov Chain
� Use lumping to reduce number of states

� How to compute the expected number of steps?
� Compute fundamental matrix
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Lumpable Markov Chains

Σ1 Σ0

Σ2

=⇒

Σ1 Σ0

Σ2

� What is Prob(Σi → Σj)?
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Lumpable Markov Chains

� A Markov chain is lumpable with respect to partition
P = {Σ0, . . . , Σl} of Σ if for any Σi , Σj ∈ P and any c1, c2 ∈ Σi

∑
c∈Σj

p(c1, c) = ∑
c∈Σj

p(c2, c)

� Given a lumpable Markov C chain define a new Markov chain CP

with states Σ0, . . . , Σl and transition probabilities

p(Σi , Σj) = ∑
c∈Σj

p(ci , c)

Observation

Expected times to reach an absorbing state in C and CP are equal.
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Relation of A and CA
P

� Let A be a self-stabilizing algorithm, Σ the set of configurations

� Let P = {Σ0, . . . , Σl} be a partition of Σ with Σ0 = L such that
CA is lumpable with respect to P

Observation

CAP can be used to calculate the expected containment time of A.
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Algorithm A3 Revisited

if ∃w ∈ N(v) s.t. c = w .c then
if random bit from 0,1 = 1 then

c := choose {0, . . . , ∆}\{w .c | w ∈ N(v)}

� Consider 1-faulty configuration c0 where node v has changed its
color to cf causing a conflict

=⇒
fault

� Rv = {w ∈ N[v ] | w .c = cf}
� Rv is a star graph

� Only nodes of Rv change their color

� Nodes choosing a color different from v it become passive
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Algorithm A3 Revisited

� Let Σj the configurations reachable from c0 where exactly j
neighbors of v are in conflict with v

� Then Σ|Rv |−1 = {c0} and Σ0 ⊆ L
� If c ∈ Σi then A3(c) ∈ Σj for some j ≤ i
� This partitioning is not lumpable

� Nodes in Rv have different degree in G
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States of CA3

Σ3 : .

Σ2 : …

.
Σ0 : …
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Algorithm A3 Revisited

� But, we can make it lumpable!
� For j < i let pij ≥ 0 be a constant with Prob(A3(c) ∈ Σj) ≥ pij

for all c ∈ Σi

� Let pij = 0 for j > i and pii = 1−
i−1
∑

j=0
pij

� P ′ = (pij) describes a new Markov chain CAP ′

Observation

Expected number of steps of CAP ′ before being absorbed is an upper
bound for the expected containment time of A3.
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(∆ + 1)-Coloring Acol

� Conversion of an (∆ + 1)-coloring of Barenboim et al. into a
self-stabilizing algorithm

� Synchronous CONGEST model
� Variables

� c: color of node or ⊥
� final : is choice of color final
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(∆ + 1)-Coloring Acol

Algorithm 4: Algorithm Acol as executed by a node v
Set<Color> tabu := ∅, occupied := ∅;
broadcast(c, final) to all neighbors w ∈ N(v);
for all neighbors w ∈ N(v) do

receive(cw , finalw ) from node w ;
if cw 6= ⊥ then

occupied := occupied ∪ {cw};
if finalw then tabu := tabu ∪ {cw} ;

if c = ⊥∨ c > δ(v) then
final := false;

else
if final then

if c ∈ tabu then final := false ;
else

if c 6∈ occupied then final := true ;

if final = false then c := randomColorOrNull(v, tabu) ;
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(∆ + 1)-Coloring Acol

� Acol is a self-stabilizing (∆ + 1)-coloring algorithm stabilizing in
O(log n) rounds whp in the synchronous model

� With respect to memory and message corruption it has
� contamination radius 1
� expected containment time at most 1

ln 2 H∆i + 11/2 with variance
less than 7.5

� Algorithm Acol has expected containment time O(1) for
bounded-independence graphs

� For unit disc graphs this time is at most 8.8
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Conclusion

� Analysis of self-stabilizing algorithms is often confined to
stabilization time starting from arbitrary configurations

� In practice recovery time from 1-faulty configurations more relevant

� Computation of containment time based on Markov chains

� Reduction of complexity with lumping

� Technique applied to a ∆ + 1-coloring algorithm yields surprising
low bounds
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