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Self-Stabilizing Systems

B Self-stabilizing systems provide non-masking fault tolerance

B Critical issue:
Length of time span and extend of disruption until full recovery

B Surprisingly complexity analysis is usually confined to worst case
stabilization time starting from an arbitrary configuration

B Considering that these systems are intended to provide fault
tolerance in the long run this is not the most relevant metric

B Practical point of view:
Single fault case is more important than arbitrary configurations!
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Metrics for Self-Stabilization

B A configuration is called k-faulty, if in a legitimate configuration
exactly k nodes are hit by a fault

B Consider a 1-faulty configuration. A self-stabilizing algorithm A
has
¢ contamination radius r
if only nodes within r-hop neighborhood of faulty node change state
during recovery
¢ containment time t
if recovery is completed in at most t rounds
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Self-Stabilizing Systems

B Why are contamination radius and containment time rarely
considered?
B [ ack of techniques?
¢ General techniques can also applied
B Contributions

¢ Markov chains for computing upper bounds for expected
containment time and its variance
¢ Application of lumping to reduce complexity of Markov chains
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Self-Stabilizing MIS

Algorithm 1: Self-stabilizing algorithm .44 to compute a MIS
if state = IN A 3w € N(v) s.t. w.state = IN then

L state := OUT

if state = OUT AVw € N(v) w.state = OUT then

L if random bit from 0,1 = 1 then

L state:= IN

B 4, has contamination radius 2, containment time west(A(G))

B 1-faulty configurations of .A; caused by a
memory corruption at v changing from /N to
OUT. Containment time is equal to worst case
stabilization time for H
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Self-Stabilizing A 4 1-coloring

Algorithm 2: Self-stabilizing A + 1-coloring algorithm A, [Gra00]

if ¢ # max ({0, ..., AY\{w.c | w € N(v)}) then
if random bit from 0,1 = 1 then
L | c:=max({0,...,A}\{w.c|we N(v)})

B A, has contamination radius and containment time at least A(G)

 Ladssad

If left-most node is hit by a fault and changes its color to A — 1, then all
nodes on horizontal line may change color
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Self-Stabilizing A 4 1-coloring

Algorithm 3: Self-stabilizing A + 1-coloring algorithm As.

if 3w € N(v) s.t. ¢ = w.c then
L if random bit from 0,1 = 1 then

| c:=choose {0,...,A}\{w.c|we N(v)}

B A3 has contamination radius 1
B What is the expected containment time?
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Self-Stabilizing Algorithms and Markov Chains

Markov Chains

B Let A be a self-stabilizing algorithm, X the set of configurations

B A can be regarded as a Markov chain C 4 with states X, where
transition probability from ¢; to ¢; is equal to Prob(A(c;) = ¢;)

B |f £ C X is the set of legitimate configurations of A then L is the
set of absorbing states of C 4

Observation
An absorbing state of C 4 is reached in expected B steps if and only if A
stabilizes in expected B rounds.
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Self-Stabilizing Algorithms and Markov Chains

Markov Chains

B Challenges

¢ Complexity of Markov chain
¢ How to determine Prob(A(c;) = ¢;)?
¢ How to compute the expected number of steps?
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Self-Stabilizing Algorithms and Markov Chains

Containment Time

B Complexity of Markov chain
¢ R,: Subgraph of G induced by nodes engaged in recovery process
from a 1-faulty configuration triggered by a fault at v
¢ Containment time of A is equal to stabilization time of A on R,
¢ Often R, is much smaller and has a simpler structure than G
B Reduction of complexity of Markov Chain
¢ Use lumping to reduce number of states
B How to compute the expected number of steps?
¢ Compute fundamental matrix
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Self-Stabilizing Algorithms and Markov Chains

Lumpable Markov Chains
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B What is Prob(L; — X;)?
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Self-Stabilizing Algorithms and Markov Chains

Lumpable Markov Chains

B A Markov chain is lumpable with respect to partition
P={%,...,% of Xifforany X;,%; € Pand any c1,c; € %;

Y p(ei.c) = X plee.c)

CEZJ' CEZ/'

B Given a lumpable Markov C chain define a new Markov chain C*

with states X, . . ., 2, and transition probabilities
ZI! Z Z ,0 Ci, C)
cEY;

Observation
Expected times to reach an absorbing state in C and C* are equal.
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Self-Stabilizing Algorithms and Markov Chains

Relation of .4 and C 4"

B et A be a self-stabilizing algorithm, X the set of configurations

B Let P = {%,...,%} be a partition of X with X9 = £ such that
C 4 is lumpable with respect to P

Observation
C AP can be used to calculate the expected containment time of A.
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Self-Stabilizing Algorithms and Markov Chains

Algorithm A; Revisited

if 3w € N(v) s.t. ¢ = w.c then
if random bit from 0,1 = 1 then
| c:=choose {0,...,A}\{w.c| we N(v)}

B Consider 1-faulty configuration ¢y where node v has changed its
color to ¢ causing a conflict

fault
=

B R ={weEN[v]|wc=c}

¢ R, is a star graph
¢ Only nodes of R, change their color

¢ Nodes choosing a color different from v it become passive
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Self-Stabilizing Algorithms and Markov Chains

Algorithm A3 Revisited

B et X, the configurations reachable from ¢, where exactly j
neighbors of v are in conflict with v
B Then Z‘|FIV|—1 = {Co} and Zo - L
B |fc € X;then Az(c) € X for some j </
B This partitioning is not lumpable
¢ Nodes in R, have different degree in G
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Self-Stabilizing Algorithms and Markov Chains

States of C 4,
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Self-Stabilizing Algorithms and Markov Chains

Algorithm A; Revisited

B But, we can make it lumpable!

¢ Forj < ilet p; > 0 be a constant with Prob(.Asz(c) € X;) > pj
forall ¢ € %;

i—1
® letpj=0forj>iandp; =1— ) pj
j=0

® P’ = (p;) describes a new Markov chain C 4

Observation

Expected number of steps of C AP " before being absorbed is an upper
bound for the expected containment time of As.
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Application

(A + 1)-Coloring A,

B Conversion of an (A + 1)-coloring of Barenboim et al. into a
self-stabilizing algorithm
B Synchronous CON GEST model

B Variables

¢ ¢: color of node or L
¢ final: is choice of color final
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(A + 1)-Coloring A,

Algorithm 4: Algorithm A, as executed by a node v

Set<Color> tabu := @, occupied = ©;
broadcast(c, final) to all neighbors w € N(v);
for all neighbors w € N(v) do
receive(cy, finaly) from node w;
if cw # L then
occupied := occupied U {cw };
L if final,, then tabu := tabu U {cy } ;

ifc=1Vc>d(v)then
| final = false;
else
if final then
| if ¢ € tabu then final := false ;
else
| if ¢ € occupied then final := true ;

if final = false then ¢ := randomColorOrNull (v, tabu) ;
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Application

(A + 1)-Coloring A,

B A, is a self-stabilizing (A + 1)-coloring algorithm stabilizing in
O(log n) rounds whp in the synchronous model
B With respect to memory and message corruption it has
¢ contamination radius 1
¢ expected containment time at most ﬁHA, 4+ 11 /2 with variance
less than 7.5
B Algorithm A, has expected containment time O(1) for
bounded-independence graphs
¢ For unit disc graphs this time is at most 8.8
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Conclusion

B Analysis of self-stabilizing algorithms is often confined to
stabilization time starting from arbitrary configurations

In practice recovery time from 1-faulty configurations more relevant
Computation of containment time based on Markov chains
Reduction of complexity with lumping

Technique applied to a A + 1-coloring algorithm yields surprising
low bounds
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