# An Analytical Model for Fast and Verifiable Assessment of Large Scale Wireless Mesh Networks

Florian Meier, Volker Turau

International Conference on Design of Reliable Communication Networks

March 26<sup>th</sup>, 2015



Institute of Telematics Hamburg University of Technology TUHH

#### Motivation



- Concentrated solar power plants
  - 1,000 1,000,000 heliostats
- Wireless control of heliostats → Cost Reduction
- Small control packets from and to the central gateway

#### **Motivation**

# Can we realize this large-scale application with off-the-shelf wireless hard- and software?

# Approaches

Single-Hop



- High power senders needed
- Coordination very difficult, since the collision domain contains thousands of senders



- Inexpensive hardware
- Coordination easier since the density is reduced
- Delivery probability decreases with the number of hops



## **Analytical Model**

# Why Analytical Model?

#### Simulation

- Step-by-step execution
- Software same as on nodes
- Slow execution
- Parameters  $\rightarrow$  Behavior
- Useful for developing models

#### **Analytical Model**

- Solving a system of equations
- Complex modeling
- Fast calculation
- $\bullet$  Parameters  $\leftrightarrow$  Behavior
- Can find parameters for simulations
- Gives new insights









## Traffic Distribution for a Single Link



## Traffic Distribution for a Single Link





## **MAC Layer**

- IEEE 802.15.4 Standard
- Widely used for energy efficient, inexpensive multi-hop networks
- Uses Carrier Sense Multiple Access with Collision Avoidance

#### Model based on

Di Marco, P.; Park, P.; Fischione, C.; Johansson, K.H. Analytical Modeling of Multi-hop IEEE 802.15.4 Networks. IEEE Transactions on Vehicular Technology, 2012.















from the stationary distribution of a Markov chain



### **Neighborhood Model**

#### Example 1: Hidden Nodes



 $\Rightarrow \text{Probability of a lost packet } P(\mathcal{LP}_I), \\ \text{a missing ACK } P_{\text{noACK},I} \text{ and a busy channel } \alpha_I.$ 

#### **Neighborhood Model**

Example 1: Hidden Nodes

#### Example 2: ACK Collisions



 $\Rightarrow \text{Probability of a lost packet } P(\mathcal{LP}_I),$ a missing ACK  $P_{\text{noACK},I}$  and a busy channel  $\alpha_I$ .





$$R_{l}=1-P\left(\mathcal{LP}_{l}\right)^{n+1}$$





Probability of Packet Collision in %





#### **Results**

#### **Reliability of Packet Delivery**



#### **Network Scalability**



#### **Comparison to Simulation**



#### **Computing the Model is Much Faster**



#### **Retransmissions**



#### **Behavior** $\rightarrow$ **Parameters**



#### Conclusion

# Can we realize this large-scale application with off-the-shelf wireless hard- and software?

Nc

### **Possible Solutions**



#### Conclusion

Analytical model for IEEE 802.15.4 mesh networks



Source code on Github

https://github.com/koalo/AnalyticalMultiHop



- Fast assessment of large-scale networks
- Acknowledgements are significant for collisions
- Mutual retransmissions decrease the performance a lot
- The application is not realizable with off-the-shelf components, but there are ways out

An Analytical Model for Fast and Verifiable Assessment of Large Scale Wireless Mesh Networks

International Conference o

Flori

#### Florian Meier

**Research Assistant** 

| Phone  | +49 / (0)40 428 78 3746 |
|--------|-------------------------|
| e-Mail | florian.meier@tuhh.de   |

rks

TUHH

http://www.ti5.tu-harburg.de/staff/meier

Institute of Telematics Hamburg University of Technology

# **Appendix**



#### **Sending Interval**



#### **Two Wireless Channels**



- Emergency Channel
  - Long Range
  - + Reliable
  - No Back Channel
- Wireless Mesh Network
  - Inexpensive
- $\bigcirc$  /  $\bigcirc$  Short Range ( $\rightarrow$  Mesh)
  - Unreliable for High Data Rates

#### Acknowledgements



#### Number of Packets per Simulation



#### Link-Based Model



- Main entities: Links
- For example collision probablity per link, not per node
- Advantages
  - Easy implementation of multiple flows
  - More accurate modeling of packet collisions

## Contributions

- Downstream traffic
- Collisions with acknowledgements
- Simultaneous retransmissions
- Enhancements for faster computation

#### **Influence of Probabilities**



#### IEEE 802.15.4 MAC Layer



#### Scenario



- IEEE 802.15.4 mesh network
- Static routing tree
- Nodes  $\rightarrow$  Gateway (upstream)
- Gateway  $\rightarrow$  Nodes (downstream)
- Poisson packet generation
- Probability of packet arrival?