A Dynamic Topology Control Algorithm for Wireless Sensor Networks

Gerry Siegemund, Volker Turau and Christoph Weyer

Ad Hoc Now 2015 June 29th, 2015

Institute of Telematics TUHH Hamburg University of Technology

Topology Control

- Topology control algorithms (TCAs) for wireless sensor networks
 - dynamically form a graph representing communication network to be used by applications
 - while maintaining local and global graph properties such as
 - high link qualities
 - low node degree,
 - k-connectedness,
 - small diameter
- TCAs aim at reduced interference, less energy consumption, and increased network capacity
- Essence: TCAs perform a deliberate choice on each node's neighbors (physical topology is thinned out)

Topology Control

Topology Control Algorithms

CAS based on transmission power control

- Raising transmission power
 - increases number of direct communication partners
 - reduces number of concurrent transmissions
- Many TCAs disregard
 - limited resources in WSNs
 - disregard fluctuations over time, i.e., they keep a computed topology forever
- Agility and stability of TCA have important influence of QoS for applications

Existing Work

i.

	New	RETC[5]	EELTC[17]	STC[14]	CONREAP[8]	LEEP[4]	XTC[18]
Distributed	YES	YES	NO	YES	NO	YES	YES
Dynamic	YES	YES	NO	NO	NO	YES	NO
Stable	YES	NO	YES	YES	YES	NO	YES
Agile	YES	YES	NO	NO	NO	YES	NO
Memory de-	NO	YES	-	YES	-	NO	YES
pends on Δ		-		-			-

Notation

- Model: Undirected graph G(t) = (V, E(t))
 - E(t) set of edges at time t
 - $(u, v) \in E(t)$ iff u and v can communicate directly at time t
- TCA dynamically computes subgraph $G_c(t) = (V, E_c(t))$ of G(t)
 - $E_c(t) \subseteq E(t)$
- TCA aims to *smoothly* update *E_c(t)* such that a list of criteria are maximized while avoiding oszillation

Criteria for $G_c(t)$

- 1. Link quality
 - $Q(e) \ge Q_{min}$ for each $e \in E_c(t)$ and any time t
- 2. Symmetry
 - Bidirectional communication
- 3. Connectivity
- 4. Bounded degree
 - Each node in G_c(t) should have at most C_N neighbors regardless of the size of V or E(t)
- 5. k-Spanner
 - Distance between two nodes in G_c(t) should be at most k-times the corresponding distance in G(t)
 - More practical criterion: Minimize average length of paths between any pair of nodes

Criteria for $G_c(t)$

6. Stability

- If $e \in E_c(t_0)$ and $Q(e) \ge Q_{min}$ at time t_0 then e should remain in $E_c(t)$ for at least $t \in [t_0, t_0 + T_N]$
- e should remain in E_c(t) for t ≥ t₀ as long as Q(e) ≥ Q_{min}
 and other criteria are fulfilled
- 7. Agility
 - If *E_c(t)* does not satisfy criteria 1 to 5 and there exists
 e ∈ *E(t)**E_c(t)* that can improve one criterion then include *e* into *E_c(t)*
 - If there exist e ∈ E_c(t₀) with Q(e) < Q_{tol} then e should be discarded from E_c during [t₀, t₀ + T_N].

Topology Control Algorithm

- Basis of TCA: Link quality estimator (LQE)
- LQE periodically computes for each link *e* = (*u*, *v*) a quality value *Q*(*e*)
 - Only links with quality above Q_{min} are considered useful
- Each node maintains three lists of fixed size
 - N: current neighborhood
 - S: standby list
 - A: assessment list
- Membership in lists depends on above defined criteria
- ♦ Promotion: From not listed $\Rightarrow A \Rightarrow S \Rightarrow N$
- Agility and stability is supported by time-triggered transitions among lists (timers T_A and T_S)

Topology Control Algorithm

Promoting nodes from A to S

 $\begin{array}{l} \textbf{upon expiration of timer } T_A \ \textit{for } p \in A \ \textbf{do} \\ A.remove(p); \\ \textbf{if } p.Q \geq Q_{min} \ \textbf{then} \\ \textbf{if } |S| < C_S \ \textbf{then} \\ S.add(p); \\ \textbf{else} \\ q := \min_Q S; \\ \textbf{if } q.Q < p.Q \ \textbf{then} \\ S.remove(q); \\ S.add(p); \end{array}$

Promoting nodes from S to N

with Period T_N do for all $p \in S$ in descending order **do** if $p.Q \ge Q_{min}$ then if $|N| < C_N$ then N.add(p);S.remove(p): else q := replacementCandidate(N, p);if $q \neq null$ then N.remove(q): N.add(p);

S.remove(p);

Replacement Candidates

- A node p ∈ S with p.Q ≤ Q_{min} replaces a node q ∈ N if this *improves* the local topology defined by N
- Goal: Optimize criteria 1, 2, 3, and 5
- Challenge: Criteria of global nature
- Criterion 5: Minimize average path lengths
 - Each node v considers its 2-hop neighborhood C_v
 - Define $Len(X) = \sum_{w \in X} dist(v, w)$
 - Find node q such that $Len(C_v \setminus \{q\} \cup \{p\})$ is minimal
 - If $Len(C_v \setminus \{q\} \cup \{p\}) < Len(C_v)$ then replace q by p
 - Challenge: How to compute Len(C_ν\{q} ∪ {p})?
 - Distributed algorithm based on weights

Minimizing Paths Length

p replaces u₄

Connectedness

From *v*'s point of view u_1 resp. u_2 are as good as *p*

14

Achieving Connectedness

- Preference: A node prefers new neighbors from a different connected component
- Distributed algorithm labels nodes with the smallest identifier of node within same connected component of G_c
- Challenge:
 - Node with smallest identifier leaves component because edge is removed or failure of node
 - Solution requires knowledge of upper bound of network diameter

Evaluation

- Comparison with two TCAs: XTC, LEEP
- Implementation with OMNet++ and the MiXiM framework
- Regular and random node placements
- Network size and density was varied
- Used LQE: HoPS
- Node addition and removal was considered

Evaluation: Dense Setup

17

Evaluation: Comparision with XTC

Number of required neighbors to achieve connected network

18

Evaluation: Comparision with LEEP

Execution of a spanning tree algorithm on top of LEEP and proposed TCA

Summary

- Novel dynamic TCA
- Goal: Optimizing global properties of topology while keeping number of neighbors bounded
- Small footprint
- Simulations show that TCA provides a good compromise between agility and stability
- Proposed TCA is used as basis for a self-stabilizing publish subscribe system

A Dynamic Topology Control Algorithm for Wireless Sensor Networks

Gerry Siegemund,

Volker Turau

Hamburg University of Technology

Phone	+49 40 42878-3530
e-Mail	turau@tuhh.de

http://www.ti5.tu-harburg.de/staff/turau

Institute of Telematics **TUHH** Hamburg University of Technology