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Challenges in Running a WSN 

Vulnerability of WSN due to : 
 Wireless communication 
 Implementation errors 
 Hardware faults 
 Unattended operation 

Gateway node 
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One mechanisms to implement a watchdog concept is “local monitoring” 
Marti et al. [Marti00] 

Local monitoring 

S R 

M 

S : Sender 
R : Receiver 
M : Monitor 

Node M monitors link from S to R 
by monitoring traffic that R  
receives from S and forwards out 
 
By analyzing traffic flows, 
monitoring nodes are able to 
detect behavior deviating from  
the specification caused by an  
implementation error or a fault, 
such as delaying, dropping,  
modifying, or producing faulty  
packets  



4 

• Node v can monitor edge e = (u,w) if v is a 
neighbor of u and w 

• Edges have monitoring constraints ω 
specifying the number of required monitors 
 

• Assumption: For each e = <u,w> ∈ E  then 
|N(u) ∩ N(w)| ≥ ω(e) 

Edge monitoring 
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Example 

1 1 

1 

red :: edges to be monitored  
blue :: monitors 
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Example 

1 1 

2 

red :: edges to be monitored  
blue :: monitors 

2 

5 monitors! 
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Example 

1 1 

2 

red :: edges to be monitored  
blue :: monitors 

2 

Only 4 monitors! 
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• Finding a minimum set of edge monitoring nodes 
is NP-hard 

• Goal: Minimal edge monitoring sets  
• i.e. a subset D of nodes s.t. for each edge e ∈ E there 

are at least ω(e) nodes in D that can monitor e and no 
proper subset of D satisfies this property 

• Distributed algorithms with provable 
approximation ratios are known [Dong08] 

• What about self-stabilizing algorithms? 

Edge monitoring 
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• Hauck proposed the first self-stabilizing algorithm for 
minimal edge monitoring problem [Hauck12] 

• O(n2m) moves under unfair distributed scheduler 

Previous Work 
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New self-stabilizing algorithm for computing minimal edge 
monitoring set: SEMS 
 
Algorithm SEMS operates under the unfair distributed 
scheduler and converges in O(Δ2m) moves 

Contribution 
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• Self-Stabilization = Closure + Convergence 
• Example: Maximal independent set 

• Nodes have state IN or OUT 
• Two simple rules 
• Livelocks under distributed scheduler 

• Solution: 
• Mutual exclusion 
• Often to restrictive 
• Nodes do not know next move of a neighbor 
• Introduce new state indicating move (WAIT) 
• Symmetry breaking with ids 

Algorithm 
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• Edge Monitoring 
 
 
 
 
 

• Problem: Critical nodes are not neighbors 
• Solution: Intermediate nodes give permission to a 

single neighbor to make a move 
• Problem: Deadlocks may arise 
• Solution: Enforce ordering (based on ids) 

Algorithm 

v 

1 1 

v 
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SEMS 

 
 
• Each node maintains a variable state with range  
     {IN, OUT,WAIT} 
• Nodes with state IN are monitors 
• State WAIT is an intermediate state from IN to OUT 

required for symmetry breaking 
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SEMS 

 
 

• Monitors of an edge are administered by end node of 
edge with smaller identifier 

• Neighbors of v that do or could monitor an edge 
adjacent to v are called target monitors 

• A node maintains for each edge it is responsible for a 
set of target monitors (TM) 

v 

u 

2 

TM 
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SEMS 

Rule to maintain TM of edge e = (v,u) 
 
1. If number of common neighbors of v and u with 

state IN or WAIT is larger than ω(e) then let 
TM = ∅ 

2. Otherwise TM consists of common neighbors of v 
and u with state IN or WAIT. If this number is 
less than ω(e) then smallest common OUT  
neighbors are added 

 

v 

u 

2 
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SEMS 

State=OUT 

ω(v,u)=3 

u 

v 

State=OUT 

State=IN 

State=OUT 

2 

3 

1 

4 
Potential monitors 

for (v,u) 

If an OUT node discovers that it is contained in TM of a 
neighbor it regards this as an invitation to change to IN 
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SEMS 
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SEMS 
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SEMS 
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SEMS 
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SEMS 

State=IN 
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SEMS 

 
 
• Nodes with state IN that are not target monitor 

for any neighbor changes from IN to WAIT 
• To transit from WAIT to OUT, all neighbors must 

give permission 
• A node gives this permission (variable PO) to 

neighbor with state WAIT with smallest identifier 
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SEMS 

State=IN 
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SEMS 

State=WAIT 
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SEMS 

State=WAIT 

ω(u,w)=3 
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SEMS 

State=WAIT 
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SEMS 

State=WAIT 
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SEMS 
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SEMS: Formal Definition 

 Variables for each node v: 
 
– S  ::  contains N(v) 
– TM  ::  the set of target monitors (Note that |TM | ≤ ∆) 
– PO  ::  contains the smallest id of all neighbors in state  
   WAIT not contained in TM or null – used to    
   give permission to change state to OUT 
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SEMS: Formal Definition 

Two groups of rules:  
Management of invitations and permissions 
Management of state 
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SEMS: Formal Definition 
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SEMS 

Examples 

To simplify examples, we consider the synchronous scheduler 
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SEMS 

1 1 1 

2 

3 

4 

5 

6 

Out 

Out 

Out 

Out 

Out 

Out 

Consider a situation where each node has  
state=Out and TM=∅ 
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SEMS 
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Step 1: Nodes 2 and 5 execute R2 

TM={1} TM={4} 
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SEMS 
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Step 2: Nodes 1 and 4 execute R3 

TM={1} TM={4} 
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SEMS 
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Step 3: Node 2 executes R2 

TM= ∅ TM={4} 
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SEMS 
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Step 4: Node 1 executes R4 

TM= ∅ TM={4} 
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SEMS 
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Step 5: Nodes 2 and 3 execute R2 

PO= 1 TM={4} 

PO= 1 
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SEMS 

1 1 1 

2 

3 

4 

5 

6 

Out 

Out 

Out 

In 

Out 

Out 

Step 6: Node 1 executes R6 

PO= 1 

PO= 1 

TM={4} 
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SEMS 
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Step 7: Nodes 2 and 3 execute R2 

TM={4} TM={4} 
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SEMS 

Example with corrupted 
state 
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SEMS 
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SEMS 
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SEMS 
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SEMS 
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SEMS 
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SEMS 
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Step 5 
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SEMS 
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SEMS 
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Contribution: 
 

• SEMS: A self-stabilizing algorithm for computing a 
minimal edge monitoring set 
 
• SEMS converges in O(∆2m) moves under unfair 
distributed scheduler 
 
• Improving on previous work (Hauck O(n2m) moves) 

Conclusions & future work 
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Conclusions & future work 

Future work 
 
1. We believe that complexity of algorithm is lower 
than O(∆2m). Conjecture: O(∆m) 
 
2. Study lower bounds of the problem for distributed 
scheduler 
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