
1

A Self-Stabilizing Algorithm for
Edge Monitoring

SSS 2014 -- Paderborn, Germany

Brahim NEGGAZI 1, Mohammed HADDAD 1 , Volker TURAU 2, Hamamache KHEDDOUCI 1

1 Laboratoire d'InfoRmatique en Image et Systèmes d'information
LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon

43, boulevard du 11 novembre 1918 — F-69622 Villeurbanne Cedex

2 Hamburg University of Technology, Institute of Telematics,
Schwarzenbergstraße 95, 21073 Hamburg, Germany

2

Challenges in Running a WSN

Vulnerability of WSN due to :
 Wireless communication
 Implementation errors
 Hardware faults
 Unattended operation

Gateway node

3

One mechanisms to implement a watchdog concept is “local monitoring”
Marti et al. [Marti00]

Local monitoring

S R

M

S : Sender
R : Receiver
M : Monitor

Node M monitors link from S to R
by monitoring traffic that R
receives from S and forwards out

By analyzing traffic flows,
monitoring nodes are able to
detect behavior deviating from
the specification caused by an
implementation error or a fault,
such as delaying, dropping,
modifying, or producing faulty
packets

4

• Node v can monitor edge e = (u,w) if v is a
neighbor of u and w

• Edges have monitoring constraints ω
specifying the number of required monitors

• Assumption: For each e = <u,w> ∈ E then
|N(u) ∩ N(w)| ≥ ω(e)

Edge monitoring

v ω(e)=1

w

u

ω(e)=3

w

u

ω(e)=4

w

u

5

Example

1 1

1

red :: edges to be monitored
blue :: monitors

6

Example

1 1

2

red :: edges to be monitored
blue :: monitors

2

5 monitors!

7

Example

1 1

2

red :: edges to be monitored
blue :: monitors

2

Only 4 monitors!

8

• Finding a minimum set of edge monitoring nodes
is NP-hard

• Goal: Minimal edge monitoring sets
• i.e. a subset D of nodes s.t. for each edge e ∈ E there

are at least ω(e) nodes in D that can monitor e and no
proper subset of D satisfies this property

• Distributed algorithms with provable
approximation ratios are known [Dong08]

• What about self-stabilizing algorithms?

Edge monitoring

9

• Hauck proposed the first self-stabilizing algorithm for
minimal edge monitoring problem [Hauck12]

• O(n2m) moves under unfair distributed scheduler

Previous Work

10

New self-stabilizing algorithm for computing minimal edge
monitoring set: SEMS

Algorithm SEMS operates under the unfair distributed
scheduler and converges in O(Δ2m) moves

Contribution

11

• Self-Stabilization = Closure + Convergence
• Example: Maximal independent set

• Nodes have state IN or OUT
• Two simple rules
• Livelocks under distributed scheduler

• Solution:
• Mutual exclusion
• Often to restrictive
• Nodes do not know next move of a neighbor
• Introduce new state indicating move (WAIT)
• Symmetry breaking with ids

Algorithm

12

• Edge Monitoring

• Problem: Critical nodes are not neighbors
• Solution: Intermediate nodes give permission to a

single neighbor to make a move
• Problem: Deadlocks may arise
• Solution: Enforce ordering (based on ids)

Algorithm

v

1 1

v

13

SEMS

• Each node maintains a variable state with range
 {IN, OUT,WAIT}
• Nodes with state IN are monitors
• State WAIT is an intermediate state from IN to OUT

required for symmetry breaking

14

SEMS

• Monitors of an edge are administered by end node of
edge with smaller identifier

• Neighbors of v that do or could monitor an edge
adjacent to v are called target monitors

• A node maintains for each edge it is responsible for a
set of target monitors (TM)

v

u

2

TM

15

SEMS

Rule to maintain TM of edge e = (v,u)

1. If number of common neighbors of v and u with

state IN or WAIT is larger than ω(e) then let
TM = ∅

2. Otherwise TM consists of common neighbors of v
and u with state IN or WAIT. If this number is
less than ω(e) then smallest common OUT
neighbors are added

v

u

2

16

SEMS

State=OUT

ω(v,u)=3

u

v

State=OUT

State=IN

State=OUT

2

3

1

4
Potential monitors

for (v,u)

If an OUT node discovers that it is contained in TM of a
neighbor it regards this as an invitation to change to IN

17

SEMS

State=OUT

ω(v,u)=3

u

v

State=OUT

State=IN

State=OUT

2

3

1

4

18

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=OUT

v
2

3

1

4

19

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=OUT

v
2

3

1

4

20

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=IN

v
2

3

1

4

21

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=IN

v
2

3

1

4

22

SEMS

• Nodes with state IN that are not target monitor

for any neighbor changes from IN to WAIT
• To transit from WAIT to OUT, all neighbors must

give permission
• A node gives this permission (variable PO) to

neighbor with state WAIT with smallest identifier

23

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=IN

State=IN

v
2

3

1

4

24

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=WAIT

State=IN

v
2

3

1

4

25

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=WAIT

State=IN

v
2

3

1

4

u.PO=1

26

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=OUT

State=IN

v
2

3

1

4

u.PO=1

27

SEMS

State=WAIT

ω(u,w)=3

u

State=WAIT

State=OUT

State=IN

v
2

3

1

4

28

SEMS

State=IN

ω(u,w)=3

u

State=IN

State=OUT

State=IN

v
2

3

1

4

30

SEMS: Formal Definition

 Variables for each node v:

– S :: contains N(v)
– TM :: the set of target monitors (Note that |TM | ≤ ∆)
– PO :: contains the smallest id of all neighbors in state
 WAIT not contained in TM or null – used to
 give permission to change state to OUT

32

SEMS: Formal Definition

Two groups of rules:
Management of invitations and permissions
Management of state

33

SEMS: Formal Definition

34

SEMS

Examples

To simplify examples, we consider the synchronous scheduler

35

SEMS

1 1 1

2

3

4

5

6

Out

Out

Out

Out

Out

Out

Consider a situation where each node has
state=Out and TM=∅

36

SEMS

1 1 1

2

3

4

5

6

Out

Out

Out

Out

Out

Out

Step 1: Nodes 2 and 5 execute R2

TM={1} TM={4}

37

SEMS

1 1 1

2

3

4

5

6

In

Out

Out

In

Out

Out

Step 2: Nodes 1 and 4 execute R3

TM={1} TM={4}

38

SEMS

1 1 1

2

3

4

5

6

In

Out

Out

In

Out

Out

Step 3: Node 2 executes R2

TM= ∅ TM={4}

39

SEMS

1 1 1

2

3

4

5

6

Wait

Out

Out

In

Out

Out

Step 4: Node 1 executes R4

TM= ∅ TM={4}

40

SEMS

1 1 1

2

3

4

5

6

Wait

Out

Out

In

Out

Out

Step 5: Nodes 2 and 3 execute R2

PO= 1 TM={4}

PO= 1

41

SEMS

1 1 1

2

3

4

5

6

Out

Out

Out

In

Out

Out

Step 6: Node 1 executes R6

PO= 1

PO= 1

TM={4}

42

SEMS

1 1 1

2

3

4

5

6

Out

Out

Out

In

Out

Out

Step 7: Nodes 2 and 3 execute R2

TM={4} TM={4}

43

SEMS

Example with corrupted
state

44

SEMS

1 3

2

3 5

6

Out

In

In

In

In

Out

4

2

1

TM=∅

TM={1,4}

TM={1,4,5}

45

SEMS

1 3

2

3 5

6

In

Wait

Wait

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}

Step 1

46

SEMS

1 3

2

3 5

6

In

In

Wait

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}

PO= 2

PO= 2

PO= 2

Step 2

47

SEMS

1 3

2

3 5

6

In

In

Wait

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 3

PO= 3

Step 3

PO= 3

PO= 3

PO= 3

48

SEMS

1 3

2

3 5

6

In

In

Out

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 3

PO= 3

Step 4

PO= 3

49

SEMS

1 3

2

3 5

6

In

In

Out

In

Wait

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 6

PO= 6

Step 5

50

SEMS

1 3

2

3 5

6

In

In

Out

In

Out

In

4

2

1

TM=∅

TM={2,4}

TM={1,4,5}
PO= 6

PO= 6

Step 6

51

SEMS

1 3

2

3 5

6

In

In

Out

In

Out

In

4

2

1

TM={2}

TM={2,4}

TM={1,4,5}

Step 7

52

Contribution:

• SEMS: A self-stabilizing algorithm for computing a
minimal edge monitoring set

• SEMS converges in O(∆2m) moves under unfair
distributed scheduler

• Improving on previous work (Hauck O(n2m) moves)

Conclusions & future work

53

Conclusions & future work

Future work

1. We believe that complexity of algorithm is lower
than O(∆2m). Conjecture: O(∆m)

2. Study lower bounds of the problem for distributed
scheduler

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 30
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53

