## An Analytical Model of 6LoWPAN Route-Over Forwarding Practices

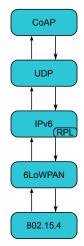
Andreas Weigel, Volker Turau

AdHoc Now 2014, Benidorm June 25<sup>th</sup>, 2014

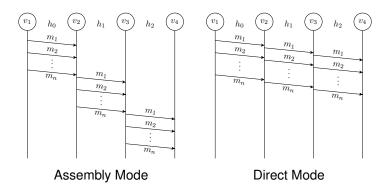


Institute of Telematics TUHH Hamburg University of Technology

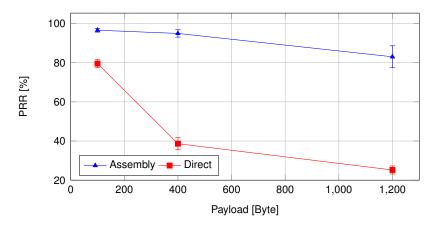



## Introduction

#### Context


- Vision: "'Internet of Things"'
- Standardized protocol stack for Low-Power and Lossy Networks (LLNs)

#### 6LoWPAN:


- compression (headers), fragmentation of IPv6 datagrams
- mesh-under and route-over routing



## 6LoWPAN – Forwarding of Fragmented Datagrams



### **Motivation**



#### ⇒ Reason for dramatic results?



## Model

# Existing Model (Ayadi et al. - 2011)

#### **Properties**

- Based on bit error rate (BER)
- Yields expectation value of number of bits sent
- Additional input parameters: number of fragments, number of hops, correctable bit errors
- Assumes bit errors to be independent
- Persists in sending fragments after loss
- $\Rightarrow$  Extend existing model to:
  - Adapt to practical forwarding mechanisms
  - Quantify overhead due to direct forwarding

### **Stepwise Model Creation, Link Layer**

Single Transmission (DATA and ACK frame)

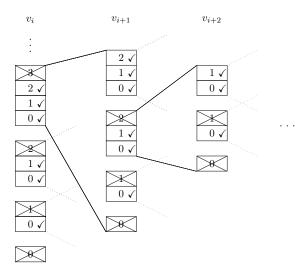
Model

- Based on BER and correctable bit errors (for DATA frame)
- Probabilities of success, failure, partial failure (p<sub>s,k</sub>, p<sub>f,k</sub>, p<sub>p,k</sub>)
- Link Layer Transmission (including retries)
  - Probabilities of success, failure and partial failure after r retries (P<sub>s,k</sub>, P<sub>f,k</sub>, P<sub>p,k</sub>);
  - Conditional expectation value of number of bits sent in case of success, failure, partial failure and success or partial failure (H<sub>s,k</sub>, H<sub>f,k</sub>, H<sub>p,k</sub>, H<sub>sp,k</sub>)

$$P_{s,k} = \sum_{j=1}^{r} p_{s,k} (1 - p_{s,k})^{j-1} H_{s,k} = \frac{1}{P_{s,k}} \left( \sum_{j=1}^{r} p_{s,k} \sum_{i=0}^{j-1} {j-1 \choose i} p_{p,k}^{j} p_{f,k}^{j-1-i} (jL_F + (i+1)L_A) \right)$$

## **Stepwise Model Creation, Multi-Hop**

- Probabilities of success and failure after passing hops h<sub>0</sub> to h (Q<sub>s</sub>, Q<sub>f</sub>)
- Corresponding expected number of bits to send (Assembly: E<sup>A</sup>, Direct: E<sup>D</sup>)


• 
$$Q_{s}(h_{0}, h, m) = \prod_{k=h_{0}}^{h} (P_{s,k}^{m-1}(P_{s,k} + P_{p,k}))$$

## **Model extension**

#### Different formulas for direct and assembly modes

- Assembly mode: Sender simply gives up at first (partial) failure, no fragments propagated further
- Direct mode: On (partial) failure, already forwarded fragments continue on their path
  - $\Rightarrow$  Recursive formula for expected number of bits to send

### **Recursive Formula**



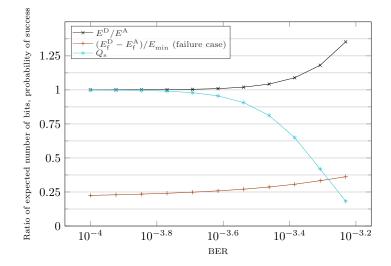
### **Recursive Formula (2)**

- $E^{\mathrm{D}}(h_0, h, m, H_{\mathrm{acc}}, P) = P \cdot H_{\mathrm{acc}}$  for  $h < h_0$  or m = 0
- *H*<sub>acc</sub>, *P*: carried-over expected number of bits sent / probability

$$E^{D} = P \cdot Q_{s} \left( E_{s}^{A} + H_{acc} \right) + P \sum_{k=h_{0}}^{h} \left( \sum_{x=1}^{m-1} E^{D}(k+1,h,x,H_{p},Q_{s}(h_{0},k-1,m)P_{s,k}^{x-1}P_{p,k}) + \ldots \right)$$

with

$$H_{\rm p} = H_{\rm acc} + (x-1)H_{\rm s,k} + H_{\rm p,k} + E_{\rm s}^{\rm A}(h_0, k-1, m)$$




## **Evaluation**

#### **Parameters**

| r                  | number of link-layer retries | 5        |
|--------------------|------------------------------|----------|
| h <sub>0</sub> , h | start hop, end hop           | 1, 8     |
| т                  | number of fragments          | 12       |
| BER                | bit error rate               | variable |
| L <sub>F</sub>     | frame size                   | 952 bit  |
| L <sub>A</sub>     | ack size                     | 56 bit   |

## **Direct and Assembly Modes**





### Conclusion

## **Summary & Future Work**

#### Summary

- Extended BER-based model for 6LoWPAN
- Quantified additional bits produced using direct forwarding
- Led to re-evaluation of testbed

#### **Future Work**

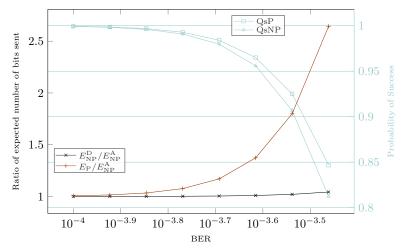
- Assess impact of effects in testbed experiments
- Implementation efficiency

## An Analytical Model of 6LoWPAN Route-Over Forwarding Practices

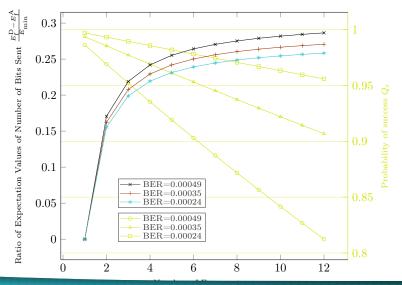
#### Andreas Weigel, Volker Turau

AdHo

#### Andreas Weigel


**Research Assistant** 

| Phone                               | +49 / (0)40 428 /8 3/46 |  |
|-------------------------------------|-------------------------|--|
| e-Mail                              | andreas.weigel@tuhh.de  |  |
| http://www.ti5.tuhh.de/staff/weigel |                         |  |


Institute of Telematics TUHH Hamburg University of Technology

#### Persistent vs Non-Persistent

NP: non persistent; P: persistent



#### Variable Number of Fragments



A. Ayadi, P. Maille, and D. Ros.
Tcp over low-power and lossy networks: Tuning the segment size to minimize energy consumption.
In New Technologies, Mobility and Security (NTMS), 2011

In New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Conference on, pages 1–5, Feb 2011.

A. Ayadi, P. Maillé, and D. Ros. Tcp over low-power and lossy networks: tuning the segment size to minimize energy consumption. *CoRR*, abs/1010.5128, 2010.