

Andreas Weigel, Martin Ringwelski, Volker Turau, Andreas Timm-Giel

MONAMI

September 24th, 2013

Institutes of Telematics and of Communication Networks
Hamburg University of Technology

TUHH

IPv6 over low power WPAN (6LoWPAN)

Vision: Internet of Things

Every device should have its own IP address and should be directly accessible through the Internet.

- IPv6 supports approximately 3.4 · 10³⁸ addresses, but:
 - 802.15.4 supports frames up to 127 byte
 - ◆ IPv6 requires a MTU of at least 1280 byte!
- Solution for using IPv6 on 802.15.4 is 6LoWPAN:
 - Intermediate layer for header compression,
 - Packet fragmentation and
 - Mesh routing (Mesh under) ability

The base specification document is RFC 4944

IPv6 over low power WPAN (6LoWPAN)

Vision: Internet of Things

Every device should have its own IP address and should be directly accessible through the Internet.

- IPv6 supports approximately 3.4 · 10³⁸ addresses, but:
 - 802.15.4 supports frames up to 127 byte
 - ◆ IPv6 requires a MTU of at least 1280 byte!
- Solution for using IPv6 on 802.15.4 is 6LoWPAN:
 - Intermediate layer for header compression,
 - Packet fragmentation and
 - Mesh routing (Mesh under) ability
 - Route-over

The base specification document is RFC 4944

Motivation

- Fragmentation can cause trouble!
 - One lost fragment results in a lost datagram
- Big packets needed by:
 - Smart Metering
 - Firmware Updates
 - ٠.
 - If it is possible, people will use it

Motivation

- Fragmentation can cause trouble!
 - One lost fragment results in a lost datagram
- Big packets needed by:
 - Smart Metering
 - Firmware Updates
 - ٠.
 - If it is possible, people will use it
- Compare different forwarding techniques
- introduce enhancements

Route-Over Forwarding Strategies

Assembly:

- On each hop: Wait for every fragment
- Reassemble datagram and send to IP Layer
- IP Layer sends datagram back to 6LoWPAN
- 6LoWPAN recreates fragments

Direct:

- On each hop: Look into the first fragment
- If not for this node lookup route
- Directly send to next Hop
- Safe routing information for next fragment

Problems

Assembly:

- Needs a big buffer
 A node needs a buffer for every incoming datagram
- Does not allow pipelining

Direct:

Can lead to heavy losses

A node tries to forward a frame while the next is being send

Enhanced Modes

Direct-RR:

- sending rate of the queue is restricted
- Inter frame delay (between 15 and 21 ms)

Direct-ARR:

- Similar to Direct-RR
- Adaptive delay (EWMA filter on last delay)

Retry Control:

- Progress-based Retry Control (PRC)
- Later Fragments of a datagram get increased number of maximum retries

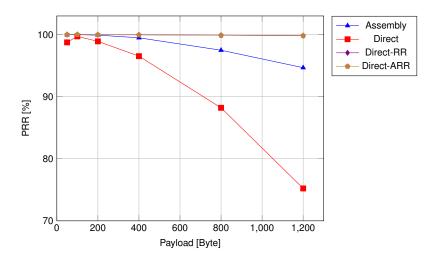
CometOS

- A Component-based, extensible, tiny Operating System for wireless sensor networks
- Developed at the Institute of Telematics (TUHH)
- Code written in C++
- One implementation for OMNeT++ and hardware
- Own implementation of the 6LoWPAN stack

Topologies

LongY-Network

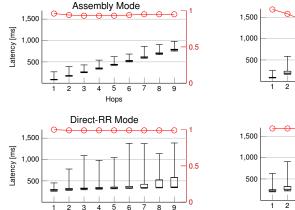
RealSim

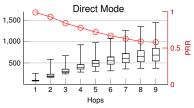

Edges represent static routes, the dark gray node is the sink.

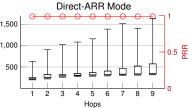
Settings

- Static Routing
- All implementations use same amount of RAM
- Perfect Links in the Chain- and Star-Network
- UDP Packets
- Sending Rate for each Node: 37.5 Byte s
- Simulation:
 - payload [Byte] = 50, 100, 200, 400, 800, 1200
 - 2000 Packets, 5 runs
- Testbed:
 - 48 000 Bytes in
 - payload [Byte] = 100, 400, 1200

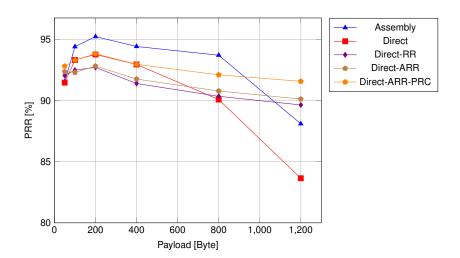
Chain-Network - PRR


0000000000

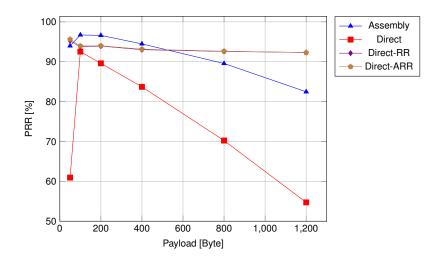


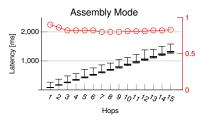

Chain-Network - Latency

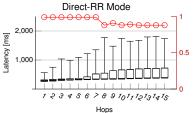
Hops

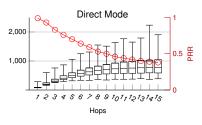


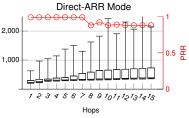
Per hop latency and PRR for 1200 Byte Payload

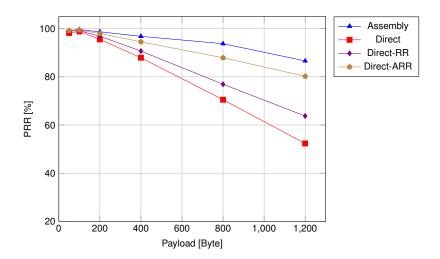

Star-Network PRR


LongY-Network - PRR

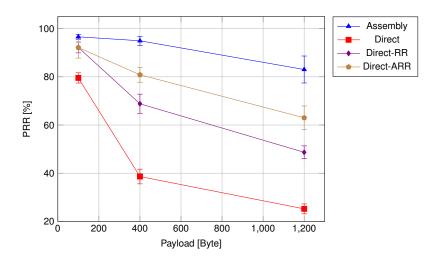


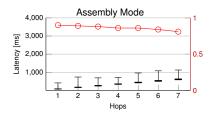


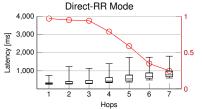

LongY-Network - Latency

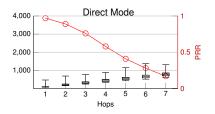


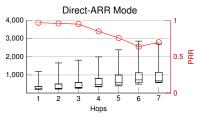
Per hop latency and PRR for 1200 Byte Payload


RealSim-Network - PRR


Testbed - PRR






RealSim-Network - Latency

Per hop latency and PRR for 1200 Byte Payload

Conclusion

- 6LoWPAN enables 802.15.4 nodes to use IPv6
- Different forwarding strategies for fragments
- Significant difference between Direct and Assembly Mode
- Rate Restriction provides better PRR
- Direct-ARR scales best, but may increase latency for small hop distances
- Retry Control has very limited impact

Outlook

- Compare selective retry control with flat increased retries
- Implement a Hop-based Retry Control
- Implement a fragment recovery mechanism
- Evaluate different settings of the MAC configuration

Andreas Weigel, Martin Ringwelski, Volker Turau, Andreas Timm-Giel

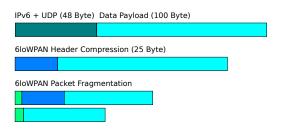
Martin Ringwelski

Research Assistant

Phone +49 / (0)40 428 78 3387

e-Mail martin.ringwelski@tuhh.de

http://www.ti5.tu-harburg.de/staff/ringwelski


Institutes of Telematics and of Communication Networks
Hamburg University of Technology

TUHH

Appendix

Packet Fragmentation

- Header with 4 for first and 5 byte for following fragments
- Allowed fragmented datagram size of up to 2048 byte
- Header inherits size and tag of the IP datagram
- Position of the fragment in the datagram is in header ⇒ Fragments do not need to arrive in order, but one lost fragment results in a lost datagram

