
Simple Indoor Routing on SVG Maps

Julian Ohrt
Hamburg University of Technology

Institute of Telematics
Hamburg, Germany

Email: julian.ohrt@tuhh.de

Volker Turau
Hamburg University of Technology

Institute of Telematics
Hamburg, Germany

Email: turau@tuhh.de

Abstract—Until now no general applicable technology for
indoor localization has prevailed. Similarly, there are many
approaches to model buildings for indoor navigation being
developed. Most of them are very expensive to apply. This work
presents a tool for graphically adding navigational data to existing
maps. It further demonstrates how to use the created map for
routing as pure web application which can be embedded in smart-
phone applications and used with any positioning technology. As
SVG is used as format for the map, it analyses performance of
rendering and manipulating SVGs on different devices. We show
that even large maps can be displayed on current mobile Android
devices sufficiently fast for usage as indoor navigation application.

I. INTRODUCTION

Even though a research area for many years and many
promising appearing results (e.g., [1]–[6]), there is still no gen-
eral applicable technology available for reliably determining
the position of handheld devices within buildings sufficiently
detailed for navigation. Further, there is no general applicable
technology for displaying indoor maps including current po-
sition or routing paths available for researchers or developers.
Existing systems for outdoor maps can be used; however, they
have some shortcomings: Most are not well suited for fine
granular structures such as rooms within building. Further, data
is usually stored on third party servers, making it difficult to
enforce security restrictions and making updates troublesome
or slow. Commercial products are available; however, their
technical details are disclosed only vaguely.

This work assumes that in the foreseeable future a tech-
nology will be generally available that allows at least room-
based localization of smartphones within buildings. Further,
we assume that for large buildings, e.g., shopping centers or
hospitals, floor plans are already available as vector graphics
which can easily be converted into SVG files. That given, this
work presents a method for enhancing existing floor plans to
indoor maps which allow showing the user’s position as well
as navigation instructions. For creating such navigable maps
a software application is presented which allows graphically
adding routing information on top of an existing map. This way
it is possible to create floor maps which - whenever a suitable
localization technology becomes available - can be used for
indoor navigation. The resulting software project SvgNaviMap
is available under GNU General Public License.

II. RELATED WORK

Available systems for displaying mainly outdoor maps, e.g.,
Google Maps (GM) or Open Street Maps (OSM), provide
worldwide map data and allow routing on streets. Since 2012

GM also starts to offer multi-level building plans without
navigation functionality [7]. OSM, specifically IndoorOSM,
also offers indoor maps which can be even used for routing [8],
[9]. Even though there are tools available for creating indoor
models, it is still a very time consuming task. Further, routing
on indoor models is only available as part of some research
projects for handpicked-buildings [10], [11].

What is more, using GM or OSM all map data is cen-
tralized and not under control of the owner of the building.
Updates may be troublesome. Security issues may arise being
not able to apply access restrictions to maps or parts of maps.

MapBiquitous [12] is a research project which aims to
combine outdoor and indoor navigation. It is based on building
models described in the Geographic Markup Language. Cre-
ating such models is similar costly as creating OSM models.
However, no editor is provided.

To the best of our knowledge, there is no technology
freely available which allows researchers to easily create and
display simple, navigable, indoor maps which are stored in a
decentralized way.

Alternatively, there are several commercial, closed-source
systems available which provide indoor localization and/or
routing [13]–[18]. However, their working principals are usu-
ally not disclosed and are thus not further considered.

III. SYSTEM DESIGN

The presented system - SvgNaviMap - is intended to
provide indoor navigation on smartphones. It bases on existing
floor plans without modifying them. Thus, colors and outline
of maps are the same on wall-mounted maps and the navigation
application. This facilitates orientation for the user as rec-
ommended by [19], reduces workload for creating maps, and
enables a uniform corporate identity through maps on different
media. Further, emphasis is put on easy creation of navigation
models. To the best of our the knowledge SvgNaviMap is the
first open-source project which allows navigation on existing
2D maps across several floors.

The basic work flow for making existing maps navigable is
shown in Figure 1. First, a floor plan of the building in question
in the SVG format is required (a). This map is then loaded
with the SvgNaviMap editor. Visually routing information is
drawn on top on the map (b). This includes defining points-
of-interest (POIs) and grouping them into categories. Further,
the map has to be pinned to a global coordinate system (c).
After the configuration phase is completed, the map including



use existing map (a)

position
provider

Choose destination:
Entrance hall
Restroom
Roof garden

(e)

pin to geolocation (c)

add routing
information (b)

Send to smartphone (d)

SvgNaviMap

Use map for indoor navigation (f)

Editor’s View

User’s View

Fig. 1. Schematic overview of how to use SvgNaviMap

navigation information is supplied to a smartphone, e.g., via a
web server (d). Assuming that a position provider is installed
(e); the user can choose a destination and start navigation.

In the following we present our design choices for Svg-
NaviMap. Afterwards we explain what kind of routing infor-
mation is required.

A. Design choices and implications

Assuming that each large building in which a navigation
system would be useful also has a server, we decided to
use a distributed approach for SvgNaviMap. This way, map
data is under control of the owner or IT administrator of the
building in question. However, it is also possible to use an
external Internet server. Even though the system implements a
server-client-architecture, the web server is merely necessary
for providing data. No dynamic procedures are performed on
the server reducing load on the server and assuring good
scalability.

As there are many mobile clients in use, and web tech-
nologies are being unified in the HTML5 standard, we chose
to rely on web technologies. In specific, we designed a
web application that strongly relies on SVG and JavaScript.
No browser plugins are required. Route calculation is done
on the client-side using JavaScript. Browsers are powerful
SVG viewers which supports most features1. Zooming and
panning is enabled by default. Further, the SVG DOM tree
can be accessed and manipulated using JavaScript. For Android
devices, SVG in the default browser is supported since version
3 [20].

1Overview of officially supported SVG elements in Firefox and WebKit:
https://developer.mozilla.org/en/docs/SVG in Firefox
http://www.webkit.org/projects/svg/status.xml

Further, it should be possible to use existing maps without
modifying them. However, bitmap graphics need to be vector-
ized first in order to profit of the interactive features of SVG
as well as lossless scaling. SvgNaviMap supports any number
of levels and needs thus to support one separated SVG file per
floor.

In order to be able to use any positioning technology which
may become available in the future, global coordinates in the
format of the World Geodetic System are being supported.
Since SVG uses its own coordinate system, a mapping between
the internal Cartesian SVG coordinates and global latitude and
longitude is required. SvgNaviMap even supports maps which
are not drawn to scale.

Navigational data is stored independently of the map data.
We assume that a visitor’s routing destination may be located
on any floor. It is thus not practical to split routing information
per level. It is not required, either, since routing information
even for a large building is relatively small. Thus, before
starting navigation, the client needs to download the complete
routing information.

The actual web application is split into two independent
parts. First is the Editor’s View. It allows the developer to
load an SVG map, then to add and configure navigational data
during setup phase. The other part is the User’s View which
simply displays the map and shows the current position and
routing directions to the end user.

B. Routing Information

Being able to show the route, SvgNaviMap needs to
have navigational information as well as the map itself. The
configuration XML file combines both parts. It is thus the
starting point when loading a new SvgNaviMap project. It
contains links to all required SVG files. Links may either
be absolute URLs or local, relative paths. Further, it contains
all information required for calculating and displaying routes
which is detailed in the following.

Routing is performed using a directed graph which is drawn
as overlay on top the SVG map. When the user enters a
destination, his location is mapped to a close vertex. From
this start position routing information is displayed as arrows
along the edges toward the destination vertex.

Vertices are either helper points, solely used to calculate
and show routes or they are Points of Interest (POIs). Latter are
detailed by a description and can be chosen as routing desti-
nations. They can also be grouped into self-defined categories,
which allow e.g., to offer a list of all restaurants in a shopping
mall. Group names are also stored within the configuration
file.

The weight of each edge is by default equal to its length.
Optionally, a weight factor can be manually added allowing to
increase or decrease the total weight of the edge. This way e.g.,
stairs can be rated more expensive than an elevator; an auto
walk cheaper than a normal corridor. Further, flags can be set
indicating in which direction the edge is routable and whether
it is wheelchair accessible. All routing information is stored
in the XML format. This way more edge-specific information
can easily be added.



Fig. 2. Overview of Editor’s View of SvgNaviMap

For multistory buildings, navigation maps should provide
multiple floors. SvgNaviMap is able to span the routing tree
over multiple floors. Each floor is assigned a lower and upper
height (floor and ceiling) allowing to map a given altitude to
a floor.

Finally, for mapping between the global, geographic co-
ordinates system and the local SVG coordinates system, two
concepts are integrated in SvgNaviMap and its configuration
file. For one, we included GPS Markers which lock an SVG
position to a real-world coordinate. As floor maps are often
not true to scale any number of markers are supported. For
correct rotating and scaling of the coordinates systems during
mapping, at least three GPS markers are required. So called
affiliation areas, on the other hand, allow mapping from any
SVG coordinate to one routing vertex. Thus, each affiliation
area is a self-defined area around its corresponding vertex. This
concept is similar to cell in a Voronoi graph, however, note that
due to obstacles like walls affiliation areas cannot be computed
automatically but have to be defined manually by the editor.
Care must be taken in order to not overlap affiliation areas
to prevent ambiguous mappings. Further, complete mapping is
only possible if they cover the whole map.

IV. USAGE

A. Editor’s View

Before using either view, SVG maps have to be integrated
into SvgNaviMap via a configuration file. Next, routing infor-
mation has to be created for the SVG using the Editor’s View
(Figure 2). Using a menu, all routing information elements de-
scribed above can be created. If available, routing information
can also be imported.

First, vertices need to be added. In general, in the center
of each room a POI vertex should be placed. Additionally,
a room label may be added as description. Helper vertices
close to each door will assure that direction arrows will not
pass through walls. Next, edges are added to connect vertices.
For edges connecting different levels, stepmarkers are inserted
automatically. Further, affiliation areas need to be assigned. All
vertices need to be inside their corresponding areas, as shown
in Figure 3.

GPS Markers are first added to the SVG map. Afterwards,
their corresponding GPS position is set either by explicitly
entering latitude and longitude or by choosing a position on
a map as shown in Figure 4. Finally, lower and upper heights
of all levels need to be set.

Fig. 3. SvgNaviMap floor map showing routing vertices and affiliation areas

Fig. 4. SvgNaviMap floor map showing GPSmarkers on the left and an
according anchor on an OSM map on the right.

Fig. 5. User’s View: Mapping from real position (red circle) to according
vertex. On the left, an example for a control menu using SvgNaviMap
JavaScript interface.

B. User’s View

This view for the user is mainly a map of the current
building which allows to display the own position, which is
mapped to the appropriate vertex according to the defined
affiliation areas (Figure 5).

After a destination is selected, the shortest route is calcu-
lated and displayed. Internally, an inverted Dijkstra algorithm
is used which calculates routes from any source node to
the destination. This way, the shown navigation directions
can be updated whenever the own position changes without
recalculating the route. In case a route contains floor changes,
SvgNaviMap shows stepmakers. They indicate where floors
are entered and exited as shown in Figure 6.

Generally, the User’s View is included into a smartphone
application inside a WebView element which by default allows
panning and zooming of the map. By calling JavaScript
functions inside the WebView the main application is able to
control SvgNaviMap.

The JavaScript interface offered by SvgNaviMap allows
to set the current position of the user which is displayed. It
may be either provided as SVG coordinate or as geographic
latitude and longitude. For a cell-based localization, it is also
possible to set the user position to a POI vertex. Further, the
interface offers methods to change the shown level, retrieve



(a) (b)

Fig. 6. Diamond-shaped stepmarker indicate floor change

TABLE I. DETAILS ABOUT DEMONSTRATION MAPS

Small project Large project
Number of levels 3 5
Rooms per level (averaged) 2 90
Number of vertices 9 825
Number of edges 9 797
SVG file size per level [kB] (gzip, level 6) 4 (1) 567 (365)
XML file size [kB] (gzip, level 6) 13 (2) 743 (70)

a list of all POIs and their categories, as well as calculating
distances between POIs. Finally, it is possible to set a routing
destination.

Using this interface the smartphone application can be
customized. E.g., it can be used to create a single purpose
application which leads the user to a predefined destination or
to create a flexible navigation system which allows the user to
chose any destination (e.g. from POI list or by tapping on the
map).

V. PERFORMANCE EVALUATION

For usability in real-world applications it is essential that
the User’s View responds quickly. For evaluating response
times we conducted two experiments, one using small maps,
the other using large maps. Details about the example projects
are listed in Table I. As the Editor’s View is only used by
the creator and maintainer of the map, performance issues
about this part of SvgNaviMap are not considered. During
development and testing an off-the-shelf PC was perfectly
sufficient this purpose.

For our experiments we loaded the complete web applica-
tion including project data into the client-sided HTML5 appli-
cation cache. This way effects of different network connections
are eliminated. Loading a project consists of three major tasks:
1) Parsing the XML file and building the corresponding XML
DOM tree using the JavaScript XMLHttpRequest object; 2)
Rendering the SVG map of all levels at once; 3) Drawing
the routing graph as overlay on top of the map according to
the XML DOM. The corresponding times are measured using
JavaScript timing functions in 10 successive runs. Their mean
values are shown in Figures 7 and 8.

As hardware platforms we used several Android devices
and a desktop PC for comparison. For the desktop PC
SvgNaviMap was tested using Chromium 29, Chrome 27,
and Firefox 23. On the Android devices the default system
browsers were used. For a comparison of CPU and RAM of
the used devices as well as OS versions see Table II.

As the Android operating system allows other applications
to run in the background the measured values deviate up to

0

100

200

300

400

500

600

700

800

Desire C

Desire S

GT-N7000

A200 Tablet

Galaxy Nexus

One X
Nexus 10 Tablet

PC
- Firefox

PC
- Chromium

PC
- Chrome

E
x
ec
u
ti
o
n
ti
m
e
[m

s]

Device

drawOverlay
svgRender
xmlParsing

Fig. 7. Loading and parsing times of SVG and XML files of small example
project

48% from corresponding mean value. However, as also on
end users’ smartphones background applications are running,
we believe that the mean value is nonetheless an appropriate
indicator for showing execution times. Furthermore, for the
large example project ignoring the first three low-performance
devices, the average deviation from the mean is less than 13%.

Considering Figure 7, a simple, but complete building
can be rendered in less than one second even on devices
with less than 1GB RAM. For much larger maps (Figure 8),
however, the low-memory devices need 16 seconds and more.
We further tested two older devices (Huawei Ideos X3, 256MB
and HTC Desire, 576MB). Both needed more than 45 seconds
for parsing and rendering. Several times the browsers even
crashed during the experiment. Clearly, these devices were not
meant and are not suited to display several large SVG files at
a time.

Smartphones with at least 1GB of RAM, however, were
able to show the complete building in 14 seconds or less.
The Galaxy 10 tablet needs even less than 4 seconds on
average. After the map is completely loaded into memory and
displayed there are no further delays. Panning and zooming



TABLE II. COMPARISON OF CPU AND RAM OF TEST DEVICES

Device name HTC Desire C HTC Desire S Samsung
GT-N7000

Acer Iconia
Tablet A200

Samsung
Galaxy Nexus
I9250

HTC One X
Samsung
Nexus 10
Tablet

PC

OS Android 4.0.3
Android 4.1.2
CyanogenMod-
10

Android 4.1.2 Android 4.0.3 Android 4.2.2 Android 4.1.1 Android 4.2.2 Windows 7
32bit

CPU Cortex A5 600
MHz

Qualcomm
MSM8255
Snapdragon 1
GHz

ARM Cortex
A9 Dual-core
1.4GHz

Nvidia Tegra
2 Dual-core
1GHz

TI OMAP
4460
Dual-core 1.2
GHz
Cortex-A9

Nvidia Tegra
3 Quad-core
1.5 GHz

Exynos 5250
Dual-core 1.7
GHz
Cortex-A15

Intel Core2
Duo 2.33GHz

RAM 512 MB 768 MB 1GB 1GB 1 GB 1 GB 2GB 2GB

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

Desire C

Desire S

GT-N7000

A200 Tablet

Galaxy Nexus

One X
Nexus 10 Tablet

PC
- Firefox

PC
- Chromium

PC
- Chrome

E
x
ec
u
ti
o
n
ti
m
e
[m

s]

Device

drawOverlay
svgRender
xmlParsing

Fig. 8. Loading and parsing times of SVG and XML files of large example
project

works smoothly on those devices. Even though we believe
that these loading and rendering times can be shortened, they
are already acceptable for research purposes.

The three tests with Firefox, Chrome and Chromium were
conducted in order to compare the three integrated SVG en-
gines: Gecko (Firefox), WebKit (Chrome), Blink (Chromium).
The total loading time is similarly fast with WebKit and
Blink, while Gecko is a little slower. Since Android’s default
browsers are based on WebKit and in the future on Blink,
no performance loss is to be expected due to the choice of
browser.

VI. FUTURE RESEARCH

Even though displaying routing instructions using arrows
is common in outdoor navigation, it cannot be applied directly
for stairs and elevators. Our proposed stepmarkers appear
to be a well-suited solution for buildings with two or three
levels, however, for more stories, especially in combination
with elevators, a description tag indicating the destination level
would be useful.

Displaying large and detailed SVG files requires a lot of

memory and processing power. In order to reduce loading
times shown in Figure 7 and Figure 8 we recommend loading
and displaying only one map when starting User’s View.
Maps of all other levels should be loaded in the background
and rendered on request only. This will roughly reduce the
perceived starting time inversely proportionally to the number
of levels.

After being able to load a single level at a time, another
optimization approach consists of dividing a single floor in
multiple SVG files. SvgNaviMap already supports different
levels. Thus, considering different parts of a single level as
pseudo-levels, splitting a single floor plan in different maps
is possible without changing the Editor’s View. Dynamically
loading of needed SVG can provide a seamless user experi-
ence.

Currently, on loading a navigable map the User’s View
builds the complete overlay routing tree by inserting graphical
SVG objects into the SVG DOM tree. This way, by toggling
the visibility of these objects a route between any two vertices
can very quickly be shown to the user. However, for most
devices building the overlay takes even longer than loading
and rendering of the SVG files themselves. To enhance re-
sponsiveness and reduce memory requirements, it should be
evaluated whether it is feasible to build the graphical routing
tree on demand only, i.e. when a route or a POI has to be
shown to the user. This would decrease loading time almost
by a factor of two.

For the near future we plan to facilitate usage of SvgNavi-
Map and to improve it such that new maps can be created
more easily. Afterwards we will create a navigable model of a
complete office building to perform usability tests and collect
real-world user experiences.

VII. CONCLUSION

We have implemented and tested an approach to show
indoor maps for several floors using the SVG format, which
allows viewing and lossless scaling in modern browsers with-
out any plugins. We connected the floor plans with routing
information using an XML file allowing to show simple
navigation instructions to the user. In order to create routing
information, we developed an editor and made it publicly
available as open-source project SvgNaviMap.

Experimentally we have shown that even without opti-
mization rendering navigable maps of small buildings on low-
end smartphones is possible in less than 1 second. For larger
buildings optimization approaches were presented and need to
be implemented and tested.



ACKNOWLEDGMENT

The German Federal Ministry of Education and Research,
under funding code 03CL26B, supported the research de-
scribed in this article.

REFERENCES

[1] M. Youssef and A. Agrawala, “On the optimality of wlan location
determination systems,” University of Maryland, College Park, Tech.
Rep. CS-TR-4459, UMIACS-TR-2003-29, April 2003. [Online].
Available: http://hdl.handle.net/1903/1271

[2] ——, “The horus location determination system,” Wirel. Netw.,
vol. 14, no. 3, pp. 357–374, Jun. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11276-006-0725-7

[3] V. V. Nguyen and J. W. Lee, “Self-positioning system for indoor
navigation on mobile phones,” in Consumer Electronics (ICCE), 2012
IEEE International Conference on, 2012, pp. 114–115.

[4] Y. Liu, Q. Wang, J. Liu, and T. Wark, “Mcmc-based indoor localization
with a smart phone and sparse wifi access points,” in Pervasive
Computing and Communications Workshops (PERCOM Workshops),
2012 IEEE International Conference on, 2012, pp. 247–252.

[5] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche, “A comparative
survey of wlan location fingerprinting methods,” in Positioning, Naviga-
tion and Communication, 2009. WPNC 2009. 6th Workshop on, 2009,
pp. 243–251.

[6] E. Martin, O. Vinyals, G. Friedland, and R. Bajcsy, “Precise
indoor localization using smart phones,” in Proceedings of the
international conference on Multimedia, ser. MM ’10. New
York, NY, USA: ACM, 2010, pp. 787–790. [Online]. Available:
http://doi.acm.org/10.1145/1873951.1874078

[7] (2013, June) Google indoormap. [Online]. Available:
http://maps.google.com/help/maps/indoormaps/

[8] J. Rocha and N. Alves, “Osm indoor: moving forward,” in OGRS2012
- Symposium proceedings, 2012, pp. 261–167.

[9] (2013, June) Openstreetmap foundation: Indoorosm. [Online].
Available: http://wiki.openstreetmap.org/wiki/IndoorOSM

[10] (2013, June) Alpen adria universitt klagenfurt - campus-gis. [Online].
Available: http://campus-gis.aau.at/

[11] (2013, June) indoorosm - mapping the indoor world. [Online].
Available: http://indoorosm.uni-hd.de/

[12] T. Springer, “Mapbiquitous–an approach for integrated indoor/outdoor
location-based services,” in Mobile Computing, Applications, and Ser-
vices. Springer, 2012, pp. 80–99.

[13] (2013, June) Senionlab homepage. [Online]. Available:
http://www.senionlab.com/

[14] (2013, June) Loop21 homepage. [Online]. Available: 13.
http://www.loop21.net/

[15] (2013, June) Gomogi homepage. [Online]. Available:
http://www.gomogi.com/

[16] (2013, June) Lambda:4 homepage. [Online]. Available:
http://www.lambda4.com/

[17] (2013, June) meridianapps - how it works. [Online]. Available:
http://www.meridianapps.com/howitworks

[18] (2013, July) infsoft - produkt. [Online]. Available:
http://www.infsoft.de/produkt

[19] A. Puikkonen, A.-H. Sarjanoja, M. Haveri, J. Huhtala, and J. Häkkilä,
“Towards designing better maps for indoor navigation: experiences
from a case study,” in Proceedings of the 8th International Conference
on Mobile and Ubiquitous Multimedia, ser. MUM ’09. New
York, NY, USA: ACM, 2009, pp. 16:1–16:4. [Online]. Available:
http://doi.acm.org/10.1145/1658550.1658566

[20] (2013, June) Android honeycomb’s browser supports svg.
[Online]. Available: http://googlesystem.blogspot.de/2011/02/android-
honeycombs-browser-supports-svg.html/


