
Mission Statement: ToleranceZone
A Self-Stabilizing Middleware for Wireless Sensor Netzworks

Stefan Lohs, Jörg Nolte
Distributed Systems \ Operating System Group
Brandenburg University of Technology Cottbus

Email: {slohs, jon}@informatik.tu-cottbus.de

Gerry Siegemund, Volker Turau
Institute of Telematics

Hamburg University of Technology
Email: {gerry.siegemund, turau}@tu-harburg.de

Abstract—Wireless sensor networks (WSN) can be used in a
wide range of monitoring and controlling applications. These
networks consist of nodes with sparse resources, which makes
application implementation challenging. Therefore, many mid-
dleware systems were developed in the last decade.

Furthermore, unattended and long-living deployments of
WSNs need fault-tolerant software architectures. The goal of
the TOLERANCEZONE project is to design a self-stabilizing
middleware, which supports the development of autonomously
recovering and highly fault-tolerant WSN applications.

Index Terms—wireless sensor networks, self-stabilization, fault
tolerance, ToleranceZone, middleware

I. INTRODUCTION

Wireless sensor networks (WSN) are suitable for a wide
range of applications. Typical examples include, environmental
monitoring, automated building control, and intrusion detec-
tion.

A WSN consists of small, inexpensive devices, which make
large area deployments, in various environments, affordable.
The on-chip radio device allows wireless communication
between these sensor nodes, making additional infrastructure
unnecessary.

Sensor nodes have restricted resources, in particular, small
memory and limited processing power. Moreover, wireless
communication is prone to frequent link changes, caused
by environmental influences, reflections, and interference. An
increasing amount of sensor nodes raises the probability of
packet collisions. Data loss and bit errors during communica-
tion are common.

Consequences are adverse effects on the execution of the ap-
plication. Eventually resulting in complete node breakdowns,
rendering the network useless in the long run.

The typical approach, to deal with such faults, is to enhance
an existing implementation with additional error handling
procedures for each potential error. Hence, complex code for
recognition and handling, needs to be implemented. These
routines lead to higher resource consumption, e.g., using up
flash memory. In addition, the more complex code is error
prone as well. The challenge is to consider all potential fault
situations, which is virtually impossible.

In contrast, it is feasible to specify the fault-free states of a
system and permanently converge, from each arbitrary state,
into this set. This is the idea behind self-stabilizing algorithms.
They guarantee, despite changes through transient faults, that
one of the stable system states will eventually be reached.

No further error handling code needs to be added, hence, the
implementation can be kept concise, while being able to handle
a large number of faults.

Due to the fact, that sensor nodes are very limited in
processing power and memory, algorithms are usually strongly
connected to the underlying platform, i.e., hardly portable
or reusable. Therefore, middleware platforms for WSN have
become quite popular [12], [11].

On the one hand, they abstract from different lower level de-
pendencies, e.g., sensor node platforms or operating systems.
On the other hand, they ease the development and the imple-
mentation of services, supporting the developer with different
interfaces and protocols, thereby, decreasing the probability of
errors due the abstraction of lower level constraints.

However, common middleware does not provide mecha-
nisms to avoid, detect, or correct faults during runtime.

Closing this gap is the aim of the TOLERANCEZONE
project. We propose to develop a middleware for WSNs based
on self-stabilizing mechanisms.

II. SELF-STABILIZATION

Self-stabilization was first mentioned by Dijkstra [1]. He
described a distributed network of processors with a set of
registers.All values stored in the registers of a processor
combined are called the state of the processor. The union of
all processor states is called the system state. Each processor
has a local view of the network, i.e., its own state and the
states of its neighbors. A self-stabilizing algorithm defines a
set of stable system states and a set of guarded rules to reach
such a state. A rule is only allowed to be executed if the guard
predicate is resolved to true.

The execution of a self-stabilizing algorithm is step-wise.
First, all processors check the rule-guards based on the own
local view and mark them as enabled if true. Second, a non-
empty set of enabled rules run their assignment part.

An algorithm described this way is self-stabilizing if it
meets the conditions of convergence and closure. The con-
vergence condition guarantees that a stable system state is
reached in finite time from each arbitrary state, given that no
error occured in the meantime. The closure condition means
that the system stays in the set of stable states as long as
no error occurs, even though an assignment part of a rule is
executed.



To use the concept of self-stabilization in WSNs, the model
has to be converted. This transformation concerns the state
exchange and the execution of the management. An overview
of the preliminary work is given in [2], [3], and [4].

SelfWISE-Framework

C. Weyer et al. developed the SelfWISE framework to
ease the implementation and execution of self-stabilizing al-
gorithms in WSNs [6]. The framework consists of two parts:

First, it provides a language and compiler which enables
the developer to implement self-stabilizing algorithms in a
predicate-logic expressional fashion. The second part provides
a modular runtime environment, which supports the generated
algorithm.

The state manager module coordinates and distributes a
node’s current state and the states of all its neighbors. To
compute the local view of each node, the neighborhood
manager determines a set of bidirectional connected nodes
as neighbors. The rule engine and the controller manage and
evaluate guards and run the assignment parts of rules.

The SelfWISE-framework was evaluated with several self-
stabilizing algorithms. Results of the tree construction, max-
imum independent set, and vertex coloring algorithm are
presented in [5]. The outcome shows, that the measured
convergence time of the algorithms, to move from an ar-
bitrary state to a stable state, is better than the calculated
worst case. The SelfTDMA protocol, presented in [9], is a
complex example of a self-stabilizing algorithm running on
the SelfWISE framework. Results of OMNeT++ simulations,
involving different fault scenarios and an evaluation with a
real hardware platform, are stated in the paper.

These findings show that the SelfWISE framework supports
the development of self-stabilization algorithms.

III. TOLERANCEZONE MIDDLEWARE

The goal of the TOLERANCEZONE project is to aid de-
velopers of WSNs to build fault-tolerant systems, with es-
sential operations based on self-stabilizing algorithms. The
four idioms which lay foundation of this project are: shared
variables, data aggregation and reduction, group formation,
and neighborhood management.

Architecture

Figure 1 depicts the TOLERANCEZONE architecture. Our
middleware is located between the sensor network application
and the operating system. Each middleware idiom is reflected
by a component in the architecture.

Shared Variables: In most applications for WSNs it is
necessary to share sensed data with other nodes of the network.
For example, in a house control application, were temperature
readings of a room are shared with actuators like the heater.

To provide the exchange of data, the TOLERANCEZONE
middleware provides an interface to define such shared vari-
ables. The middleware takes over the management and updates
the variables with a single writer and multiple reader semantic.
At first we want to investigate concepts to exchange data

Application

Glue API

CometOS Re�ex
OMNeT ++ Hardware

To
le

ra
nc

eZ
on

e Shared Variables

Data Reduction

Data Exchange 

Application 
Driven 

Self-Stabilizing 
Algorithms

Data Aggregation

Group Formation
Neighborhood 
Management

Fig. 1. Architecture of the ToleranceZone Middleware

within a 1-hop neighborhood of the nodes. In the second
step the considered concepts will be extended to a k-hop
neighborhood.

Because of the behavior of self-stabilization, a first lower
bound achieveable is eventual consistency, i.e., we can not give
guarantees about individual intermediate states of the shared
variables. In most WSN applications, e.g., the heating control,
this assumption is sufficient. Still it is possible that applications
requires harder restrictions on the deviation they allow, e.g., an
emergency stop of a machine caused by overpressure. We will
investigate which stronger consistency models can be realized
with self-stabilization. Furthermore, we will substantiate if
fault detectors can be used to achieve superstabilization as
introduced by Dolev [2].

Data Aggregation and Reduction: Based on the shared
variables, we are going to investigate self-stabilizing mecha-
nisms for data aggregation and reduction.

In monitoring applications it is often unnecessary to con-
sider all sensed data of the network, in most cases it is
sufficient to receive an aggregated value of a time period,
for instance, the average temperature of a room. A reduction
function can be used to collect the temperature of rooms which
have an inadequate heating.

Both functionalities are necessary and common in WSN
applications. In the case of self-stabilization, reduction and
aggregation is not considered as a one-shot operation. Self-
stabilizing reduction as well as aggregation are defined infor-
mally: as a continuously updated result, reflecting the latest
values of participating nodes.

Group formation: Shared Variables are not necessarily
shared within the whole network, neither only with 1-hop
neighbors. In sensor network applications, data is often ex-
changed between nodes fulfilling conjoint tasks. These nodes
can be located in different physical locations. Group form-
ing might be based on common properties, e.g., having the
same sensors, or manufacturer. Continuing the house control
example: The heater does not need the data of the outdoor
sprinkling system, but, the intrusion detection needs the data
of all motion detectors around the building.

To compute the set of nodes, participating in data ex-
change, is the task of the group formation component. The



TOLERANCEZONE provides the application developer with an
interface to define constraints, that determine, which nodes are
chosen for a specific group.

Neighborhood Management: A special group is the
neighborhood provided by the neighborhood management
component. In case of WSNs, the one-hop communication
relation is not known a priori and changes over time. Self-
stabilizing algorithms depend on state exchange between
nodes within a bidirectional neighborhood, to determine stable
system states. Therefore, the neighborhood management com-
ponent has to discover and to cohere a long-lasting neighbor-
hood. To achieve this, we are investigating additional filters,
e.g., link estimators.

At first, the 1-hop neighborhoods is considered. The derived
techniques will then be augmented to support bigger, k-hop
neighborhoods. This will make more complex self-stabilising
algorithems possible.

Additional Elements: The presented components for each
idiom fulfill their tasks in a self-stabilizing manner. This
makes state exchange of each module necessary. To collect and
distribute the state is the main purpose of the Data Exchange
component. We will investigate mechanisms to avoid unnec-
essary communication. At a bare minimum, all states will be
aggregated to decrease the amount of communication steps.
Piggybacking, of certain control data on top of application
data, and compression algorithms are promising ideas, which
will be evaluated.

The task of the Application Driven Self-Stabilizing Algo-
rithms component is to enable developers to run their own self-
stabilizing algorithms. To allow this, an interface, to register
external rule based algorithms and states, will be provided.

Underlying Systems

Both groups at TUHH and BTU have done previous work
in the field of WSNs. To evaluate their work, in simulations
and real world deployments, operating systems for embedded
systems were developed, these are, COMETOS (TUHH) [7]
and REFLEX (BTU) [8] .

Either system is event-driven, component-based, and uses
the programming language C++. Furthermore, each system
supports the OMNeT++ simulation environment. Making im-
plementation tests, with logging and evaluation, very con-
venient. Moreover, the direkt portation of simulation code
to hardware code is a main feature of both programming
abstractions.

GlueAPI: The TOLERANCEZONE middleware is be-
ing developed simultaneously for either environment, i.e.,
COMETOS and REFLEX. Hence, an abstraction layer be-
tween the middleware and the operating system is necessary.
To achieve this, a set of interfaces was defined called GlueAPI.
This API provides mechanisms for communication and wraps
the event-driven scheduling procedures supplied by the un-
derlying system. The GlueAPI enables the TOLERANCEZONE
implementation, thereby the WSN application, to be executed
on one of both systems at a time.

Evaluation

The goal of TOLERANCEZONE is to reach a higher fault
tolerance compared to traditional approaches. Therefore, sev-
eral realistic fault scenarios have to be developed to evaluate
the difference between the self-stabilizing and the common
approach.

For comparison, the TeenyLime [10] middleware was cho-
sen. TeenyLime is a suitable, state-of-the-art example of
another data centric middleware for WSN. Its tuple-space
concept has many similarities to the data exchange of self-
stabilizing algorithms.

IV. CONCLUSION

The goal of the TOLERANCEZONE project is to corrobo-
rate the following two thesis: First, the common middleware
idioms shared variables, data aggregation and reduction, group
formation, and neighborhood management, can be realized in
an inherent fault-tolerant manner by utilizing self-stabilization.
Second, the implementation, based on these self-stabilizing
mechanisms, is much more resource-sparing, while reaching
at least the same performance as the TeenyLime middleware.

V. ACKNOWLEDGMENTS

ToleranceZone is funded by the Deutsche Forschungsge-
meinschaft (DFG NO 625/6-1).

REFERENCES

[1] E. W. Dijkstra. Self-Stabilizing Systems in Spite of Distributed Control.
Communications of the ACM, 17(11):643–644, Nov. 1974.

[2] Shlomi Dolev. Self-stabilization. MIT Press, 2000.
[3] Ted Herman. Models of self-stabilization and sensor networks. Dis-

tributed Computing - IWDC 2003, volume 2918 of Lecture Notes in
Computer Science, pages 836–836. Springer. 2003.

[4] V. Turau and C. Weyer. Fault tolerance in wireless sensor networks
through self-stabilisation. Int. J. Commun. Netw. Distrib. Syst., 2:78–98,
2009.

[5] Christoph Weyer, Volker Turau, Andreas Lagemann, and Jörg Nolte.
Programming wireless sensor networks in a self-stabilizing style. In
Third International Conference on Sensor Technologies and Applica-
tions, 2009.

[6] Christoph Weyer and Volker Turau. Selfwise: A framework for devel-
oping self-stabilizing algorithms. Kommunikation in Verteilten Systemen
(KiVS), Informatik aktuell, pages 67–78. Springer. 2009.

[7] Stefan Unterschütz, Andreas Weigel, and Volker Turau. Cross-Platform
Protocol Development Based on OMNeT++. In Proceedings of the 5th
International Workshop on OMNeT++ (OMNeT++’12). 2012.

[8] Karsten Walther and Jörg Nolte. A flexible scheduling framework
for deeply embedded systems. In In Proc. of 4th IEEE International
Symposium on Embedded Computing, 2007.

[9] Stefan Lohs, Reinhardt Karnapke, Jörg Nolte, and Andreas Lagemann.
Self-stabilizing sensor networks for emergency management. Second
Workshop on Pervasive Networks for Emergency Management.pp. 721-
726. 2012.

[10] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. TeenyLIME: Tran-
siently Shared Tuple Space Middleware for Wireless Sensor Networks.
In Proceedings of the 1st ACM International Workshop on Middleware
for Sensor Networks (MIDSENS - colocated with ACM/IFIP/USENIX
Middleware), 2006.

[11] Gummadi, Ramakrishna, Gnawali, Omprakash, Govindan, and Ramesh
Macro-programming Wireless Sensor Networks Using Kairos Dis-
tributed Computing in Sensor Systems, Springer. 2005.

[12] Kay Römer Programming Paradigms and Middleware for Sensor
Networks Institute for Pervasive Computing, ETH Zurich, 2004.


