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ABSTRACT
Software development for wireless sensor networks can be
accomplished with dedicated operating systems such as Con-
tiki or TinyOS. However, protocol design and verification as
well as debugging is still challenging. On the other hand,
high-level simulation environments, e.g., OMNeT++, allow
convenient and rapid development, but the resulting code
has to be re-implemented for a particular hardware platform.
This paper introduces CometOS, a component-based, exten-
sible, tiny operating system for wireless networks. CometOS
is written in C++ and highly inspired by OMNeT++’s com-
munication paradigm. It allows a cross-platform execution
of protocols on OMNeT++ as well as on resource-restricted
platforms such as wireless sensor nodes. A feasibility study
is carried out on 93 nodes in the solar tower plant Jülich,
Germany.

1. INTRODUCTION
Protocol design for wireless networks is a challenging task.

A hardware centric development procedure is often inappro-
priate because of reduced debugging and testing capabilities.
Additionally, the mere effort and costs to set up testbeds of
meaningful size are significant—if this option is even avail-
able in the first place. Hence, simulation is an indispensable
method to verify and evaluate (wireless) network protocols.
High-level simulation frameworks like OMNeT++ provide
powerful tools for live-inspection, visualization, configura-
tion, etc. They are, however, usually not well suited for
simulation at code-level, i.e., simulating code for a particular
hardware platform. Therefore, additional effort is required
to port the protocol implementation.

Obviously, sharing code among simulation and testbed en-
vironment can significantly increase the development speed.
Simulators for the widely-spread TinyOS (TOSSIM, [4]) and
Contiki operating systems (COOJA/MSPSim, [6]) provide
this possibility. We approach the issue from the other di-
rection and propose CometOS, a lightweight framework for
the OMNeT++ simulator, enabling effortless transition to
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a hardware platform while maintaining most of the rich set
of features of the OMNeT++ simulation environment.

CometOS is published under GPLv3 license1. Note that
only the base framework including the MAC abstraction
layer (see Sect. 3) is published. Network protocols devel-
oped in research projects are excluded. Currently supported
are simulations within Atmel’s ATmega128RFA1 and OM-
NeT++ module.

This paper is structured as follows: Section 2 briefly de-
scribes other simulation tools offering similar capabilities.
Subsequently, the principles and architecture of CometOS
are introduced and the programming interface is illustrated
by examples. Section 4 discusses our approach and demon-
strates its feasibility in simulations and a testbed. The last
section concludes our approach and points at future work.

2. RELATED WORK
OMNeT++ is a object-oriented, discrete event simulation

framework [7]. Its core is a module-based architecture and
a message passing concept. Modules are interconnected by
gates which are used as access points for messages. This ap-
proach provides a very loose coupling and greatly promotes
the development of reusable building blocks. While OM-
NeT++ itself does not provide specific components to sim-
ulate a certain problem domain, a large number of model
frameworks have emerged addressing this issue. For ex-
ample, the MiXiM framework [2] aims at the simulation of
wireless sensor networks and provides extensive support for
modelling the wireless communication channel, mobility of
nodes, MAC layers and energy consumption.

TOSSIM is a code level simulator for TinyOS applications
written in the nesC programming language [1, 5]. It pro-
vides physical layer modelling at Bit granularity, inspection
of base-type variables and the visualization tool TinyViz.
Experiments are configured using the Python scripting lan-
guage. Some drawbacks of TOSSIM are the limitation to
a single code image and limited debugging capabilities—as
there is no debugger for nesC, one has to debug the gener-
ated C-Code and mentally translate identifiers. This can be
hard especially for instances of generic components, which
are distinguished only by unique arbitrary number prefixes.

Another popular OS for wireless sensor networks, Contiki,
comes with the COOJA/MSPSim simulator [6]. Its high-
light is the so-called cross-level simulation. Thereby, nodes
within the same network can be simulated at different levels:
at network level (a high-level Java implementation), at op-
erating system level (an actual Contiki-application) and at

1www.ti5.tu-harburg.de/research/cometos/cometos.zip

http://www.ti5.tu-harburg.de/research/cometos/cometos.zip
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Figure 1: CometOS Architecture

machine code instruction level (a per-instruction hardware
emulation). Additionally, COOJA also enables the simula-
tion of TinyOS code.

3. ARCHITECTURE
A key design goal for CometOS is to provide a lightweight,

flexible and extensible framework for a rapid network proto-
col development. Most concepts are directly adopted from
OMNeT++. The core of CometOS comprises the classes
Module, InputGate, OuputGate, Message and Object. These
implement the basic concepts of OMNeT++: message pass-
ing via input and output gates, scheduling of self-messages
and attaching arbitrary objects to message instances.

As shown in Fig. 1, the realization of CometOS is split
into two major parts. The upper and lower figures show
the architecture for a target hardware and OMNeT++, re-
spectively. Both have in common that user protocols can be
implemented and executed without porting effort.

Besides user code, the architecture for the actual hardware
platform consists of a platform-independent core framework

that implements the module and message passing concept.
This requires a scheduler, which is itself part of a hardware-
independent layer (HIL). Note that the scheduler interface
is not directly exposed to the user code. Its functionality is
only accessible through the Module class. Furthermore, the
HIL provides high-level interfaces for accessing parts of the
target hardware, e.g., the medium access control abstraction
layer (MAC AL). Details on the implementation of CometOS
for a target platform are given in Sect. 3.5.

For the simulation of user code the functionality of Come-
tOS is mapped to the infrastructure of OMNeT++ using
the class adapter pattern. That way, simulations of pro-
tocols written for CometOS do not differ from dedicated
OMNeT++ simulations. Runtime support for inspection of
modules and messages, location of undisposed objects and
eventlogging is maintained. If needed, models for simulating
hardware-specific components have to be implemented (e.g.,
MAC AL).

1 using namespace cometos ;

2

3 class MyMessage : public Message {
4 } ;
5

6 class MySender : public Module {
7 public :

8 OutputGate<MyMessage> gateOut ;

9

10 MySender ( ) :

11 gateOut ( this , ”gateOut ”)

12 {}
13

14 void i n i t i a l i z e ( ) {
15 schedu le (new Message , &MySender : : t r a f f i c ) ;

16 }
17

18 void t r a f f i c (Message∗ t imer ) {
19 gateOut . send (new MyMessage ) ;

20 schedu le ( timer , &MySender : : t r a f f i c , 500 ) ;

21 }
22 } ;
23

24 class MyReceiver : public Module {
25 public :

26

27 InputGate<MyMessage> gateIn ;

28

29 MyReceiver ( ) :

30 gateIn ( this , &MyReceiver : : handle , ”gateIn ”)

31 {}
32

33 void handle (MyMessage ∗msg) {
34 // process message recept ion

35 delete msg ;

36 }
37 } ;

Listing 1: Gates and Message Passing

In comparison to OMNeT++, CometOS provides less rich
functionality due to the need of running it on resource-
constrained microcontrollers, e.g., only a clock accuracy of
milliseconds is currently provided by each Module. In the
following the main principles are introduced in more detail.



3.1 Message Passing Interface
CometOS adopts the concept of gates for inter-module

communication from OMNeT++. Similarly, we use a syn-
chronous execution model: events like message reception are
modelled as non-preemptive tasks. The order of execution
is governed by the task scheduler at the target platform and
by the OMNeT++ event scheduler within the simulation
environment.

As an extension to the message passing system, we added
type safety and handler methods. Gates are instantiated for
a subclass of Message. A connection between an input and
an output gate is only possible if they define the same type.
This reflects the idea that a gate defines a specific inter-
face. Furthermore, dynamic casting on the microcontroller
is avoided, which would otherwise need C++’s RTTI. We
also believe that explicit type safety for messages makes the
development of protocols less error-prone.

OMNeT++ forwards all messages to the method han-

dleMessage(). In complex modules, this method often de-
generates to a simple dispatcher. CometOS binds handlers
directly to gates. The handler itself must provide a signa-
ture corresponding to the message type of the gate. That
way, explicit dispatching and type casting is avoided. Self-
messages can be directly scheduled in combination with a
handler, thus multiple timers mapped to different handlers
can easily be implemented.

Listing 1 shows how to define input and output gates
within modules and how to register the corresponding han-
dler methods. In line 3, a subclass of Message is defined.
Here, no members are defined. Those can be added manu-
ally as needed—OMNeT++’s domain specific language for
message definitions is not supported. Then two modules
are defined. The initialization of the defined gates has to
be done in the constructor. There, a pointer of the owner,
a name, and, in case of an input gate, a handler must be
given. The Sender starts a timer in the method initial-

ize. When the timer fires, an instance of MyMessage is sent
and the timer is rescheduled. At the other end, the Receiver
accepts messages of type MyMessage and passes them to the
method handler().

CometOS already proposes a convention for communi-
cation between neighboring protocols. Modelled after the
primitives defined for service access points, we add the ba-
sic message types DataRequest and DataIndication and
some base modules for communication endpoints and layers.
These provide a convenient basis for the implementation of
protocol stacks.

3.2 MAC abstraction layer & Airframes
In order to enable wireless communication, platform-de-

pendent code for accessing the wireless channel is necessary.
Within the OMNeT++ simulation environment this can be
provided, e.g., by the MiXiM framework [2], whereas hard-
ware nodes employ driver software for the used transceiver
chip. An important design goal of CometOS is to keep the
portion of platform-dependent code as small as possible.
For this purpose we introduced a MAC abstraction layer
which serves as basis for higher-level protocols. This generic
layer has a rich interface for sending and receiving data and
already provides a configurable CSMA-CA medium access
protocol with support for random backoffs, clear channel as-
sessment and acknowledgements and retransmissions. The
rationale for choosing this level of abstraction is to match

the hardware-software-boundary of the abundant 802.15.4-
compliant devices, which offer integrated support for those
mechanisms. By providing the possibility to disable any of
those functions individually, the MAC abstraction layer may
on the other hand also serve as a basis for other medium ac-
cess schemes like TDMA and low-power-probing or -listening.

1 uint16 t val1=10, va l2 =20;

2 request−>getAir f rame ( ) << val1 << val2 ;

3 . . .

4 uint16 t val1 , va l2 ;

5 i nd i ca t i on−>getAir f rame ( ) >> val2 >> val1 ;

Listing 2: Airframes

Data packets for the wireless communication are repre-
sented by the class Airframe since OMNeT++’s cPacket

is not suited for the realization on a microcontroller. Air-

frame is a managed byte array supporting serialization and
deserialization of data. Airframes are part of the message
types DataRequest and DataIndication. The code snippet
in Listing 2 demonstrates the usage of airframes.

Airframes support serialization and deserialization for all
native types. For user-defined types, e.g., structs, this seri-
alization has to be implemented by the user. This provides
the opportunity to pack the data very tight. A serializa-
tion using the memcpy function is not recommended since
endianness, padding, and packing of types may differ if het-
erogeneous platforms are used within a network.

3.3 Cross-Layer Support
In general, CometOS is intended for a stacked protocol

design. However, in some situations cross-layer approaches
might be desired. For this purpose we added the possibility
of loose object aggregation. Each message can be associated
with additional objects deriving from the class Object. Note
that a similar kind of object aggregation is utilized by NS3
[8]. The ownership handling of aggregated objects is similar
to OMNeT++’s ControlInfo objects.

// Appl icat ion : s e t tx power to −20 dBm

request−>add (new MacTxPower(−20)) ;

. . .

// MAC: use MacTxPower i f s e t

MacTxPower∗ txPower= request−>get<MacTxPower>() ;

i f ( txPower != NULL) { . . . }

Listing 3: Cross Layer Support

Listing 3 shows how to use object aggregation in Come-
tOS. In the example an application protocol sets the trans-
mission power for a data request. The connected MAC layer
checks whether a message is associated with additional con-
trol information.

3.4 Configuration and Initialization
The configuration of a node, meaning the instantiation

of modules, setting parameters and connecting gates, differs
between the OMNeT++ and a target platform. Listing 4
shows configuration code for the sender and receiver modules
in Sect. 3.1.



1 // Setup for OMNeT++ in NED language

2 // ( skipped dec lara t ion of modules )

3 network Network {
4 submodules :

5 sender : MySender ;

6 r e c e i v e r : MyReceiver ;

7 connections :

8 sender . gateOut −−> r e c e i v e r . gate In ;

9 }
10

11 // Setup for AVR

12 MySender sender ;

13 MyReceiver r e c e i v e r ;

14

15 int main ( ) {
16 sender . gateOut . connectTo ( r e c e i v e r . gate In ) ;

17 cometos : : i n i t i a l i z e ( ) ;

18 cometos : : run ( ) ;

19 return 0 ;

20 }

Listing 4: Configuration for OMNeT++ and AVR

While the former is done using the NED language and
.ini files as ever (see lines 1-9), the latter requires a C++
configuration file containing the function main. This proce-
dure is straightforward as depicted in the lines 12-20.

3.5 Additional Target Platforms
Currently, CometOS is implemented for the OMNeT++

simulation environment and the ATmega128RFA1 micro-
controller with an integrated 802.15.4-compliant transceiver.
Support for an platform based on an ARM Cortex M3 and
a TI CC1120 transceiver is planned for near future.

To ease transition to other hardware platforms, we strove
for keeping the interface to the hardware-dependent part as
slim as possible. The core framework at minimum needs the
implementation of a scheduler to realize message passing.
As the CometOS core makes use of dynamic memory allo-
cation, this functionality must be available as well. Further-
more, the MAC abstraction layer (see Sect. 3.2) has to be
implemented to provide high-level access to the transceiver
and enable transmissions to the wireless channel. Interfaces
to peripherals, e.g., sensors, EEPROM, are currently not
prescribed by CometOS and have to be added as needed.
Note that CometOS doesn’t rely on C++’s RTTI, excep-
tion handling, and the STL.

4. EVALUATION
In this section we evaluate CometOS in matters of re-

source demand, usability, and accuracy of the simulation.
For this purpose CometOS is implemented in OMNeT++
and for an AVR 8-bit microcontroller (using GNU’s C++
compiler version 4.5). For the latter we use a microcontroller
(ATmega128RFA1) with an embedded 802.15.4 compliant
transceiver and 16 kB SRAM, 16 MHz clock frequency, and
128 kB Flash memory.

Most findings of this section originate from the experi-
ences gained in the HelioMesh project [3]. In this project, we
evaluate the feasibility of wireless mesh networks as control
technology for a field of self-powered heliostats. A testbed
containing 93 wireless nodes was deployed in the heliostat
field Jülich, Germany (see Fig. 2).

Figure 2: HelioMesh Testbed Jülich, Germany
(Latitude, Longitude: 50.913316, 6.387691)

4.1 Feasibility
CometOS benefits from its close relationship with OM-

NeT++, which allows a convenient protocol development
using the tools supported by simulator and Eclipse/CDT.
Most software bugs in the HelioMesh communication stack,
e.g., memory leaks, could be fixed with help of the simula-
tor. When we deployed the code to the target platform, we
only observed errors at driver level. Once the drivers were
working as expected, no failures occurred that could not be
detected and fixed within the simulation environment.

The HelioMesh firmware instantiates 20 modules for dif-
ferent purposes. Those include routing, neighborhood, clus-
tering, and application protocols and build up a branched
protocol stack. CometOS’s airframe concept and the object
aggregation have proven to be useful for creating complex
protocol stacks. Both allow a loose coupling of modules,
which highly increases the reusability of the developed pro-
tocols.

Since the resource demand in OMNeT++ is noncritical,
we restrict the following analysis to the AVR implementa-
tion only. The core system and the tiny sample applica-
tion (see Listings 1 and 4) needs 8.4 kB of flash memory
and 478 Bytes statically allocated RAM. The firmware of
the HelioMesh project (20 modules) occupies 62 kB and uses
4.5 kB static and allocates in average 1.5 kB dynamic mem-
ory. Note that the memory consumption also depends on the
number of instantiated modules and the used protocols and
may significantly differ for various software. However, the
used controller (ATmega128RFA1) easily meets the resource
demand.

4.2 Simulation Accuracy
We compared the accuracy of the simulation with the

testbed in Jülich. The latter is controlled via a basesta-
tion software, written in Java, which is connected via USB
to a gateway node. In OMNeT++, the complete HelioMesh
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Figure 3: Comparison of Simulation and Testbed

firmware was simulated with a real-time scheduler, too. We
reused the same basestation software for the OMNeT++
simulation. The network was connected to a gateway node
via TCP/IP, simulating the serial connection. The wire-
less channel and transmission is simulated with the MiXiM
framework. Its configuration is set corresponding to the used
802.15.4 transceiver hardware. For the simulated environ-
ment no overload of the real-time scheduler occured, i.e.,
simulation time and real time were synchronous.

We measured the round-trip time (RTT) for the commu-
nication between the basestation and nodes of various hop
count. 50 Bytes payload were used for each packet. Link-
layer reliability is applied, meaning that each one-hop trans-
mission is acknowledged. The averages and standard devia-
tions (100 measurements each) are depicted in Figure 3. In
general, the results of simulation and testbed are close to-
gether. However, the higher standard deviation in the simu-
lation are due to a timing jitter caused by the TCP/IP con-
nector. The USB connection in the testbed shows less fluctu-
ations. For the used protocol stack, the additional process-
ing time caused by the execution of CometOS’s scheduling
and message passing mechanisms and the protocols them-
selves (which is not accounted for within the simulation)
did not significantly bias the experiment results. The ex-
periment shows that simulations of protocols implemented
for CometOS can provide a good estimation of their real-
world performance.

5. CONCLUSIONS AND FUTURE WORK
This paper introduces CometOS, a component-based, ex-

tensible, tiny operating system for wireless networks. Come-
tOS adopts concepts of OMNeT++ and allows platform-
independent protocol development. Higher level protocol
implementations can be executed within the simulation en-
vironment itself as well as on resource-restricted hardware.
An evaluation was done based on ATmega128RFA1 mod-
ules in a deployment of 93 nodes in the heliostat field Jülich.
The experiment revealed that CometOS is competitive with
COOJA and TOSSIM with regard to the simulation envi-
ronment, accuracy (due to the MiXiM framework), exten-
sibility, debugging capabilities and its functional facilities
inherently given by C++.

The released software provides no communication proto-
cols and is still work in progress. Furthermore, a generic
configuration of modules is missing yet, but will be inte-
grated using the NED language in the future. Currently, we

also lack the capability to conveniently manage and config-
ure distinct sets of statistics collection for simulation and
hardware environment. CometOS is used for further re-
search projects, e.g., a large-scale readout and configuration
of electricity meters.
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