COMPUTING PRACTICES

(ross-Platform
Development Tools
for Smartphone
Applications

Julian Ohrt and Volker Turau
Hamburg University of Technology, Germany

Developers can use cross-platform mobile development tools to create
smartphone apps that meet user expectations, but existing XMTs need

improvement.

he smartphone market has grown steadily in recent

years, with unit shipments surpassing even those of

PCs in late 2010." This growth has fueled demand

for a wide range of new mobile applications by both
consumers and businesses.

The rapid development of hardware and software plat-
forms for smartphones by various vendors has resulted
in a large number of mobile operating systems (MOSSs).
Currently, four MOSs—Symbian, Android, BlackBerry OS,
and i0S—dominate the market,” but at least five other,
smaller MOSs have a dedicated user base: Windows Mobile
(WinMob), Windows Phone 7 (WP7), bada, webOS, and
MeeGo. Moreover, the market is highly dynamic. Research
In Motion is moving from the BlackBerry OS to the QNX-
based BlackBerry Tablet OS; Nokia will forego Symbian
in favor of WP7; and Tizen, a new, Linux-based OS, will
replace MeeGo.

The diverse and continually evolving MOS landscape
constitutes a huge challenge for application developers.
Unlike the desktop computer market, where more than
90 percent of users use Windows, mobile app developers
must target multiple platforms to reach the same number
of users. However, MOSs come with their own software
development Kit (SDK), each of which uses a unique pro-
gramming language,* and provide their own custom API.
In short, developers must write an application separately
for each mobile platform. Mobile app providers thus face

COMPUTER

Published by the IEEE Computer Society

a dilemma: either invest considerable resources develop-
ing the same app for all mobile platforms, or leave some
platforms unsupported and risk alienating potential
customers.

Mashup® services like Andromo App Maker (Www.
andromo.com), iBuildApp (www.ibuildapp.com), and
AppMakr (www.appmakr.com) make it possible to create
smartphone applications using dialogs, without the need
for native SDKs. However, their capabilities are usually
limited to Internet-related resources, like embedding RSS
feeds or Twitter channels. Other functionalities, such as
accessing local databases or an address book, are generally
not available. Further, these services do not support several
platforms using the same configuration.

Anthony Wasserman® outlined two options for reduc-
ing application development efforts while still supporting
multiple mobile platforms: use Web browsers to create
platform-independent apps, or use cross-platform mobile
development tools (XMTs) to create apps for different smart-
phone platforms from the same code base.

We focus on the latter approach by providing an over-
view of current XMTs, comparing their advantages and
drawbacks.

SMARTPHONE APPS

Three aspects of smartphone applications that are
important for understanding XMTs are the way such apps

0018-9162/12/$31.00 © 2012 IEEE

are installed, their internal structure, and their graphical
user interface (GUI) elements.

Installation

Whereas users usually can get software for desktop
computers from various sources—including CDs, DVDs,
or the Internet—and afterward install it on any number of
devices, they can only obtain smartphone apps via dedi-
cated app stores. Each MOS provider operates its own app
store that only offers applications for that MOS. After cre-
ating an application for a particular MOS, the developer
submits it to the corresponding app store. Once the app
store approves the application, all users of that MOS can
download and install it.

For some MOSs like iOS or bada, the vendor’s app
store is the only way for a developer to market applica-
tions. An application banned from the app store cannot be
distributed. Because each app store has its own rejection
policies, potentially at least one store could reject every
app. Although they primarily reject apps for illegal or vio-
lent content, app stores can reject apps for other reasons.
For example, in 2010, Apple prohibited apps not “origi-
nally written in Objective-C, C, C++ or JavaScript” in its app
store. App stores often reject applications that download
executable code or interpret code not contained within the
application archive.

XMTs thus must neither apply technologies nor include
features that might cause an app store to ban created
applications.

Application structure

The safest way for a developer to avoid rejection of an
app for technological reasons is to use the SDK provided
by the target MOS vendor. Application packages’ structure
and content differ greatly depending on the native SDK. For
example, Android’s SDK creates Dalvik bytecode, a deriva-
tive of Java bytecode optimized for resource-restrained
devices; XCode for iOS compiles to binary code; and webOS
apps consist mainly of HTML, JavaScript, and image files.
Thus, “native app” has a distinct meaning for each MOS.

Integrated apps. While the native output format is SDK
dependent, each SDK creates archives installable on smart-
phones that run the corresponding OS. These applications
are integrated into the system after installation—that is,
they appear in the default application list and can access
system functionalities.

Integrated applications can be developed as native or
interpreted apps. Both are well-known approaches for cre-
ating cross-platform software on desktops—for example,
QT for natively running software and Java for interpreted
programs. However, whereas Java programs are run by
launching the Java runtime, which in turn invokes and
executes the Java program, interpreted apps for MOSs are
always launched directly. This implies that at least the entry

point of each MOS application contains native code. Inter-
preted applications then launch the appropriate runtime
environment, which in turn interprets the program code,
while native apps continue executing native code.

In the context of XMTs, we can identify four basic cat-
egories of mobile apps: (1) purely native applications that
access the system API directly, (2) purely native applications
that access the system via a library providing an abstraction
level, (3) interpreted applications that include the VM in the
application package itself, and (4) interpreted applications
that require a VM installed as a separate application. For
interpreted applications, we do not distinguish whether a
runtime environment is a process virtual machine or an
interpreter;” we refer to either as a VM.

The safest way for a developer

to avoid rejection of an app for
technological reasons is to use the
SDK provided by the target MOS
vendor.

Nonintegrated apps. These include Java Midlets, Flash
applications, or webpages containing application functional-
ity (Web apps). In general, separate tools like a Web browser
invoke these apps, and they do not allow direct access from
the system’s app list. Developers usually use third-party
tools to create nonintegrated apps. Most of these tools do
not allow access to smartphones’ advanced features—for
example, Java Midlets do not have multitouch functionality,
and Flash applications cannot access Bluetooth hardware.

GUI elements

Mobile app GUIs consist of standard elements like but-
tons, labels, or list boxes. There are three main types of
GUI elements.

Native. Typically, the most responsive GUI elements are
those that the system itself uses and that the corresponding
SDK supports.

Web-based. Alternatively, smartphone apps can rely on
the system’s Web browser to provide the GUI. In this case,
the application embeds a Web view that renders HTML
code and thus displays browser elements such as HTML
input fields that developers can modify using Cascading
Style Sheets (CSS). Using Web technologies, developers can
achieve a uniform look and feel across platforms, provided
that different browsers implement rendering identically.
At the same time, OS-specific CSS files make it possible to
imitate native GUIs.

Custom. The third option is to create custom GUI ele-
ments that the app itself draws and controls. This approach
is the most flexible but also the most complex, easily

SEPTEMBER 2012

73

COMPUTING PRACTICES

Table 1. XMT application structure and GUI elements.

Application structure
Purely native (Partly) interpreted GUI elements
XMT Version (1) (2) (3) (4) Native Web-based Custom
Flash Builder 45 v v v/
lllumination 4.0 v/ 4
Software
Creator
LiveCode 46.4 v 4
Marmalade 515 v 4
MoSync 26 4 4 4 v
OpenPlug 3.09 v v 4
Studio
PhoneGap 1.1 v 4
RhoStudio 3.0.2 v v v 4
Titanium 1.71 v v

74

prolonging development time and inhibiting application
performance.

CROSS-PLATFORM MOBILE DEVELOPMENT
TOOLS

Developers can use XMTs to create integrated applica-
tions for several smartphone platforms from the same code
base that app stores will generally accept.

XMT taxonomy

Table 1 categorizes nine XMTs in terms of the created
apps’ internal structures and GUI elements. The four num-
bers in the “Application structure” columns correspond to
the four categories of mobile apps. The GUI classification
refers to the system’s default approach: most XMTs that
use native or custom GUI elements also can embed a Web
view to display HTML elements. Each system creates apps
for at least Android and i0S. We obtained as much data as
possible on these XMTs from vendor documentation and
supplemented this information with a subjective analysis
of the compile process.

Flash Builder. Developers can use Adobe Flash Builder
(www.adobe.com/products/flash-builder-family.html), a
stand-alone SDK built on the Eclipse platform, to create
interpreted applications using the ActionScript language
or open source Flex app framework. Depending on the
MOS, AIR runtime software is either included in the XMT
package (captive runtime support) or must be installed on
the target system. For example, iOS only allows captive
runtime support because Apple’s App Store does not allow
apps to interpret code not contained within the app archive
itself. For Android, Flash Builder supports captive runtime
since AIR 3.0.

COMPUTER

lllumination Software Creator. Radical Breeze’s Illumi-
nation Software Creator (http://radicalbreeze.com) provides
a drag-and-drop capability for use in designing standard
GUI elements such as text boxes, buttons, and labels. Simi-
larly, developers can access predefined, graphical blocks
that represent events and apply other functions like basic
mathematical operations and conditional statements.
Unless defining custom blocks, developers need not write
code. After finalizing an Android or iOS app, they can use
the corresponding SDK to compile it.

LiveCode. Runtime Revolution’s LiveCode (Www.runrev.
com) is both an XMT and a programming language. Com-
piling Android and iOS applications requires using the
corresponding SDKs. Although LiveCode’s compile pro-
cess is not officially documented, newsgroup posts by
developers indicate that it uses interpreted code, with the
VM embedded in the application package. However, an
analysis of Android apps created with LiveCode suggests
that developers can also create purely native apps using
integrated libraries.

Marmalade. The Marmalade SDK (www.madewith
marmalade.com) requires using either Microsoft Visual
Studio or Apple XCode. Developers write the applications
in C++ An emulator allows debugging. The compile process
is not documented, but an analysis of compiled Android
apps indicates that Marmalade uses interpreted code with
an integrated VM.

MoSync. Like Flash Builder, MoSync (www.mosync.com)
is a stand-alone SDK based on the Eclipse Platform. During
the compile process, it first transforms C++ source code
into platform-independent intermediate code and then
creates the actual application package in a second step.
Depending on the MOS, MoSync contains precompiled

libraries together with the intermediate code compiled
to either MoSync bytecode or native code. In the case of
bytecode, the app also includes a VM. Again depending on
the target platform, the VM can contain an ahead-of-time
compiler that compiles MoSync bytecode to native code on
the smartphone.

OpenPlug Studio. No longer maintained as of 15 Decem-
ber 2011, OpenPlug Studio (http://developer.openplug.com)
was available as an Eclipse plug-in as well as a stand-alone
SDK based on the platform. Developers wrote program
logic in ActionScript and defined the GUI in Adobe’s MXML
markup language. Although the compile process was not
documented, analysis revealed that OpenPlug Studio com-
piled source code to a custom binary code and combined
this with a precompiled library in the app package. Whereas
the binary code appeared to be bytecode, the precompiled
library most likely contained the corresponding VM.

PhoneGap. Writing Adobe PhoneGap (http://phonegap.
com) apps requires using the native SDK for each targeted
MOS. PhoneGap provides native source code or libraries for
each supported platform. It also includes a template for creat-
ing native smartphone apps that is extended with HTML and
JavaScript files. Developers use HTML code to define the GUI,
which a full-screen Web view element renders. The Web view
element interprets JavaScript code, which can access local
hardware via an interface provided by PhoneGap.

RhoStudio. Rhomobile’s RhoStudio (http://docs.
rhomobile.com/rhostudio.tutorial) is an Eclipse plug-in for
developing and debugging mobile applications using the
open source Rhodes framework. Developers use Ruby to
implement program logic. At compile time, RhoStudio con-
verts the source code into bytecode and wraps it with a
VM in the app package. The GUI is based on a Web-view
element that shows webpages served by an embedded web-
server. With the integrated Ruby interpreter, developers can
use eRuby to create dynamic webpages.

Titanium. Appcelerator’s Titanium (wWww.appcelerator.
com) is a stand-alone SDK also built on the Eclipse plat-
form. Developers write all source code in JavaScript. Using
APIs offered by Titanium, they can access system functions
as well as define the GUI. During compilation, Titanium
combines source code with a JavaScript interpreter and
other static content into an app package. At runtime, the
interpreter processes JavaScript code.

XMT challenges

Considering the broad variety of concepts XMTs apply
to create applications on multiple smartphone platforms,
a simple comparison of XMTs across common categories
is infeasible. However, XMTs’ internal details are of sec-
ondary interest to developers as long as app stores accept
created applications, and most end users are oblivious of
the underlying technology. For practical purposes, then,
the most important considerations are whether an XMT

satisfies developer needs and whether the resulting apps
meet user expectations.

Developer needs. A major requirement for developers is
the ability to target as many platforms as possible with the
least amount of effort, which generally equates to a mini-
mum of coding—preferably, one programming language
within one development environment. However, working
from a single code base presents several problems.

First, the developer must be able to implement concepts
and services that are handled differently among smart-
phone platforms, including multithreading, push services
from a server to the application, and in-app ads.® The XMT
must either shield the developer from these differences
with an abstraction layer sufficiently generic to cover all
platforms, or it must provide options to more easily manage
concepts and services individually.

Even more problematic are functionalities not all
platforms support or that are unique to individual plat-
forms—for example, Live Tiles is only part of WP7. Most
XMTs deal with this issue by offering the lowest-common-

The most important considerations
are whether an XMT satisfies
developer needs and whether

the resulting apps meet user
expectations.

denominator subset of features. Thus, before deciding
whether to use an XMT, developers should carefully con-
sider what functionalities they need and whether it provides
them. Advanced features of target platforms might not be
available.

In addition, developers prefer an XMT that provides iden-
tical and correct behavior for all target platforms, which
theoretically limits debugging and testing. Unfortunately,
no available XMTs provide such a guarantee. However, this
problem is not unique to XMTs—it also arises for different
versions of the same platform.

Ideally, an XMT would also support distribution of the
final version of an application to various app stores. Other
desirable functionalities can accelerate app development
including compilation without the need for native SDKs,
code completion and refactoring, a GUI designer, a debug-
ger, an emulator, and profiling capabilities.

User expectations. End users expect smartphone apps to
install quickly and to be functional and intuitive. It should
also be possible to install and run applications in parallel.
XMTs can influence these attributes to varying degrees.

XMTs can speed up app installation by creating small
app packages. They can enhance responsiveness by provid-
ing nimble GUI control elements and a short launch time.

SEPTEMBER 2012

75

COMPUTING PRACTICES

Table 2. XMT support of various mobile operating systems.

Mobile operating system

XMT Android bada BlackBerry i0S MeeGo Symbian webOS WP7 WinMob
Flash Builder v 4 4 4 4
lllumination v v
Software
Creator
LiveCode v v
Marmalade v v v v v v
MoSync v v v v 4 4
OpenPlug v v v v/ v/
Studio
PhoneGap v v/ v v v/ v v v/
RhoStudio v v v v/ v v/
Titanium v v v

76

XMTs can facilitate concurrent usage by making applica-
tions more resource efficient—that is, by limiting persistent
and working memory usage.

Intuitiveness, which is closely connected to design, is
difficult to measure and thus hard to achieve. Users of a
given platform are accustomed to apps following certain
user interface and experience conventions—for example,
Android phones have a compulsory hardware back button
and thus do not require an application to provide such
an input field. Apps that do not follow such conventions
might seem alien to the point of being unusable. XMTs can
provide platform-specific GUIs to optimally comply with
user expectations.

XMT COMPARISON

To assess XMT effectiveness, we compared the nine
XMTs listed in Table 1 according to several objectively
measurable properties. In terms of developer needs, we
focused on features and functionalities intended to reduce
development effort. In terms of user expectations, we con-
sidered various performance characteristics. It should be
emphasized that other XMTs are available on the market
and thus this evaluation is not exhaustive.

Features and functionalities

Table 2 shows which XMTs support which MOSs. All of
the tools we evaluated support Android and iOS. Black-
Berry, Symbian, and WinMob are also well-supported.
Few XMTs support recent or less popular MOSs like bada,
MeeGo, webOS, and WP7. None of the tools support all
MOSs.

Table 3 compares some of the features and functionalities
these XMTs offer to help speed up the development process.

The option of using a familiar programming language
can be a strong incentive to select a certain XMT. I[llumina-

COMPUTER

tion Software Creator uniquely requires no programming
at all, but its expressiveness is limited to the capabilities
of the provided drag-and-drop elements. Currently, this
XMT does not offer access to hardware or system func-
tionalities, and it relies on the target platforms’ SDKs for
compiling, debugging, and emulating.

Some XMTs allow direct compilation of apps without
the need for the target platform’s native SDK. This frees
the developer to download, install, get acquainted with,
and possibly register for several native SDKs.

Unfortunately, many XMTs do not provide features that
facilitate programming such as code completion, a graphi-
cal GUI designer, or a debugger—all of which Android’s and
iPhone’s SDKs support.

XMTs typically include an emulator for testing and
debugging. In general, these are very fast—faster than
Android simulators—and thus increase productivity. How-
ever, most emulators are VMs, and if they are not fully
compatible with the VM implementations on the target
platforms, problems might not be detectable before testing
on the hardware devices.

Most XMTs that do not support certain system func-
tionalities let developers extend functionality using
native code. However, this is a complex task that
requires writing, debugging, and testing native code
for all targeted platforms. An example of hardware
with poor XMT support is Bluetooth, possibly because
no generally available system API exists. For example,
WP7 provides no API at all, and iOS only allows Blue-
tooth connections between Apple handheld devices.
Support for other hardware or system functionalities is
considerably better. For example, with the exception of
Ilumination Software Creator, all XMTs provide an API
to access the camera, and all except LiveCode provide
access to the local contact list.

Table 3. XMT features and functionalities.

Compile Extensible
Programming without Code GUI with native | Bluetooth
XMT Version language SDK completion | designer | Debugger | Emulator code support
Flash Builder 4.5 ActionScript v v v v/ Own v/ X
and MXML
lllumination 40 None X X 4 SDK SDK 4 X
Software (drag-and-
Creator drop)
LiveCode 4.6.4 LiveCode X X v v Own X, except X
i0S
Marmalade 5.1.5 C++ v v X v Own v X, except
i0S
MoSync 2.6 C++ v, except v X v Own v v, except
i0S WP7
OpenPlug 3.09 ActionScript v X X X Own v X
Studio and MXML
PhoneGap 1.1.1 HTML and X v X X SDK v X
JavaScript
RhoStudio 3.0.2 Ruby X v X v Own v v, except
WP7 and
Symbian
Titanium 1.7.1 JavaScript X v X 4 SDK v X

In general, there is no easy way to determine whether
an XMT supports a specific system feature or functional-
ity. Documentation can be out-of-date or even unavailable.
Complete support of a functionality is often restricted to
particular platforms.

Performance

Several performance attributes of applications created
with XMTs are measurable. Small file size correlates to a
fast installation time. A short launch time increases respon-
siveness. Less persistent memory enables installation of
more apps in parallel; low RAM usage is essential to run-
ning apps concurrently.

To obtain comparable performance metrics, we created
a simple application on all nine XMTs that consisted of
one screen, which shows a small text label, and a default
icon. We compiled each app for Android in release mode.
File size was the first data point. We determined launch
time and memory usage during application execution on
an Android 2.2 simulator. To confirm that performance
was similar on a real smartphone, we also executed the
sample apps on a low-end Huawei Ideos X3 device running
Android 2.3.3.

Some XMTs create apps that install themselves on
first launch. For these tools, we only considered repeated
launches. We measured launch time from starting the appli-
cation until the text label appeared. To determine required
RAM, we used the procrank utility to measure the run-
ning app’s unique set size (USS)—the amount of memory

freed on closing the application—via the Android emula-
tor’s debugging shell. Because procrank is not accessible
on real smartphones, we give only the values measured
on the emulator.

Unfortunately, we could not launch the evaluation app
created with Flash Builder on either the emulator or on
the Huawei smartphone because we could not install the
VM. In this case, we used the more powerful HTC Desire
smartphone, on which we could download the 8-Mbyte
Adobe AIR package from Android Market. After this instal-
lation, which required 24 Mbytes of persistent memory. we
successfully launched the evaluation app.

The right half of the upper part of Figure 1 shows the
launch time of the evaluation applications created with
the nine XMTs, sorted from fastest at the top to slowest at
the bottom. For reference, the first row contains results
obtained running a native Android implementation of
the app. For comparison, the bottom right of the figure
shows the launch time of Qype, a purely native Android
application that lets users list, comment on, and upload
photos of places and companies of public interest. Qype
provides considerably higher functionality and a more
complex GUI than the evaluation app. Of its file size, 1.5
Mbytes consist of static resources like images.

The left half of the upper part of Figure 1 shows the
apps’ size and required RAM, with the corresponding Qype
values below.

The results clearly demonstrate that the choice of XMT
strongly influences overall app performance. Only four

SEPTEMBER 2012

77

COMPUTING PRACTICES

78

(MB]14 12 10 8 6 4 2 0

e Windows dominates the desktop

native (Android)
2.2
lllumination
4.0
MoSync
2.5
LiveCode
463
PhoneGap
1.0.0
OpenPlug
3.0.8.33
Marmalade
513
RhoStudio
3.0.2
Titanium
1.7.2
Flash Builder
45

(13.5)

(12.5)

(12)

(not available)

computer market, but Mac and Linux,
despite having very small market
shares, continue to exist.

e The home videogame console market
is roughly divided equally among
three devices: PlayStation 3, Wii, and
Xbox 360.

Market research firms Gartner® and
IDC? both predict a distribution of MOSs
in 2015 similar to those of videogame
consoles: Android is expected to have 46
percent of the market, followed by WP7
(20 percent), iOS (17 percent), BlackBerry
(12 percent), and all others (5 percent). If
these predictions hold, XMTs will play
an important role in smartphone appli-
cation development.

Qype (Android)
2.2

(1.5)

Application package size [MB] -
Required RAM (USS) (MB] [

Figure 1. Performance characteristics of a simple evaluation application created on

the nine XMTs, along with those of the native Qype Android app. The choice of XMT
strongly influences application performance.

of the XMTs—Illumination Software Creator, LiveCode,
MoSync, and PhoneGap—created evaluation apps that
launched at least as fast as and required less RAM than
Qype. This means that, alone, the VMs deployed by the
other XMTs consumed more resources than a full-grown,
purely native application.

Future evaluations should consider XMTs’ impact on
runtime performance, as well as how launch time and
memory usage scales for more complex apps. Comparing
applications on other platforms, such as iOS, would also
be valuable.

he future of XMTs strongly depends on the future

of mobile operating systems. The greater diversity

of MOSs and the more equal their market share,

the more important XMTs will become. However,
as MOSs are free-market products, their future cannot be
reliably predicted. Past experience shows that a shakeout
is not the only option:

e Of three potential successors to the DVD opti-
cal storage medium—>Blu-ray Disc, HD DVD, and
VMD (Versatile Multilayer Disc)—only Blu-ray tech-
nology is used today.

COMPUTER

. Launchtime (hardware) [s]
. Launchtime (simulator) [s]

However, XMTs must improve consid-
@) erably to become a serious alternative to
native SDKs for two reasons. First, many
current XMTs provide far less develop-
ment support. Second, available XMTs
create apps with much higher resource
requirements than purely native appli-
cations. Further, XMTs must offer better
support for platform-specific user inter-
face and user experience requirements.
Where hiding device fragmentation is infeasible or impos-
sible, or would hide a platform’s unique character, XMTs
should help developers manage fragmentation.

Today’s XMTs are merely suited for developing cross-
platform applications, which impose modest demands on
CPU power and memory resources, do not rely on cutting-
edge technologies, and do not make high GUI demands.

It is also possible that mobile apps will follow the same
trend that has characterized the PC market for the past
several years, and Web apps will supplant native apps. In
this case, neither native SDKs nor XMTs would be required.
Instead, there would be a need for tools to develop applica-
tions that run within mobile Web browsers and make full
use of the functionalities of the forthcoming HTML5 stan-
dard. At the same time, researchers would have to address
other issues including interrupted or unavailable mobile
Internet connections, access to system functionalities from
within Web apps, and Web browser compatibility.

An advantage of moving to Web applications is that they
do not need to be installed, and updates can be transpar-
ently and instantly made available to all users worldwide.'°
This would weaken the position of app stores and deprive
MOS vendors of full control of smartphone apps. Another
argument favoring Web applications is that attempts to
prematurely replace existing protocols and techniques with

new ones often fail. Thus, integrated mobile apps and app
stores could share the same fate as the Wireless Applica-
tion Protocol.

Acknowledgment

The German Federal Ministry of Education and Research,
under funding code 03CL26B, supported the research
described in this article.

References

1. Int’l Data Corp., “Android Rises, Symbian”3 and
Windows Phone 7 Launch as Worldwide Smart-
phone Shipments Increase 87.2% Year Over Year,
According to IDC,” 7 Feb. 2011; www.idc.com/getdoc.
jsp?containerld=prUS22689111.

2. Int’l Data Corp., “PC Market Records Modest Gains during
Fourth Quarter of 2010, According to IDC,” 12 Jan. 2011;
www.idc.com/getdoc.jsp?containerld=prUs22653511.

3. Gartner, “Gartner Says Android to Command Nearly Half
of Worldwide Smartphone Operating System Market by
Year-End 2012,” 7 Apr. 2011; www.gartner.com/it/page.
jsp?id=1622614.

4. A.Charland and B. LeRoux, “Mobile Application Develop-
ment: Web vs. Native,” Queue, Apr. 2011, pp. 20-28.

5. F. Daniel, M. Matera, and M. Weiss, “Next in Mashup
Development: User-Created Apps on the Web,” IT Profes-
sional, Sept./Oct. 2011, pp. 22-29.

6. AL Wasserman, “Software Engineering Issues for Mobile
Application Development,” Proc. FSE/SDP Workshop
Future of Software Eng. Research (FOSER 10), ACM, 2010,
pp- 397-400.

IEEE TRANSACTIONS ON

AFFECTIVE COMPUTING

A publication of the IEEE Computer Society

7. J.E. Smith and R. Nair, “The Architecture of Virtual
Machines,” Computer, May 2005, pp. 32-38.

8. R. Virkus et al., Don’t Panic: Mobile Developer’s Guide
to the Galaxy, 9th ed., Enough Software, 2011; www.
enough.de/fileadmin/uploads/dev_guide_pdfs/
Guide_9thEdition_WEB.pdf.

9. Int’l Data Corp., “Worldwide Smartphone Market
Expected to Grow 55% in 2011 and Approach Shipments
of One Billion in 2015, According to IDC,” 9 June 2011,
www.idc.com/getdoc.jsp?containerld =pruUs22871611.

10. T. Mikkonen and A. Taivalsaari, “Reports of the Web’s
Death Are Greatly Exaggerated,” Computer, May 2011,
pp. 30-36.

Julian Ohrt is a PhD student in the Institute of Telematics at
Hamburg University of Technology, Germany. His research
interests include indoor-location-based services for smart-
phones. Ohrt received an MSc in computer science from
Hamburg University of Technology. Contact him at julian.
ohrt@tu-harburg.de.

Volker Turau is a professor of distributed systems, and
heads the Institute of Telematics, at Hamburg University
of Technology. His research interests include wireless com-
munication and enerqgy reduction in distributed systems.
Turau received a PhD in mathematics from the Johannes
Gutenberg University of Mainz, Germany. He is a member
of IEEE. Contact him at turau@tu-harburg.de.

. Selected CS articles and columns are available for free
C n at http://ComputingNow.computer.org.

Affective Computing is the field of study concerned
with understanding, recognizing and utilizing human
emotions in the design of computational systems. The IEEE
Transactions on Affective Computing (TAC) is intended to
be a cross disciplinary and international archive journal
aimed at disseminating results of research on the design

of systems that can recognize,

interpret, and simulate

human emotions and related affective phenomena.

Subscribe today or submit your manuscript at:
www.computer.org/tac

SEPTEMBER 2012

79

