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IntroductionIntroduction

Knowing Your Neighbors

Reasons

� Clustering
� Collaborative node tasks
� Routing
� Self-* algorithms

Problems & Challenges

� Addition or failure of nodes
� Temporal changes of wireless channel
� Comparison and prediction of links
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Simply track your neighbors and associated link qualities!

Simply?
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Link Assessment Options

Physical Measures

� Signal-to-Noise Ratio (SNR)
� Link Quality Indicator (LQI)
� ...

+ Provided by hardware

- Hardware-dependent,
Requires actual packet
reception,
Difficult-to-compensate
effects

Logical Measures

� Packet History
e.g., Packet Success Rate (PSR)

� State of known nodes
� ...

+ Reflects
application-centric link
quality

- Requires packet
transmission
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The Swiss Army Knife Problem

or the tale of describing a link with a single value
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Holistic Packet Statistics - HoPS

1. Short-term analysis
◁ first-order smoothing

2. Long-term analysis
◁ second-order smoothing

3. Oscillation
◁ absolute average deviaton

4. Trend
◁ estimation error
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A Case StudyA Case Study

Setup

Link Traces

� Real-world office experiment with IRIS nodes
� Synthetic links

Evaluation method

� Java Test Suite
� Simulation of TinyOS implementation (16 bit integers)
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Sudden Quality Drop
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� first and second order smoothing close together
� clearly negative trend
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Temporary Disturbance
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� first order smoothing far away from oscillation bounds
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Highly Fluctuating Link
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Conclusion

The reward ...

� Short- and long-term analysis of link quality
� Oscillation and trend indicators
� Sophisticated link assessment and behavior prediction
� Fulfillment of application-specific demands
� Same speed as single EWMA estimation

and the prize

� Interpretation and comparability is more complex
� Higher usage of memory and computation power

8 byte, 4 multiplications (EWMA)
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Work in Progress

� Comparison with other link quality estimators
� Analysis of relation with hardware metrics (SNR, LQI)
� Assessment of link-quality prediction
� Integration into Mahalle neighborhood protocol
� Handling of non-uniform packet reception patterns
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First- and Second-Order Smoothing
First-order Smoothing

𝜉t = 𝛼 · 𝜉t−1 + (1 − 𝛼) ·Pt , Pt =

{︃
1 , t th packet received
0 , t th packet missed

(1)

𝜉t = (1 − 𝛼) ·
n∑︁

i=0

𝛼i ·Pt−i + 𝛼n+1 · 𝜉t−(n+1) (2)

Second-order Smoothing

𝜈t = 𝛽 · 𝜈t−1 + (1 − 𝛽) · 𝜉t (3)

◁ Back
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Upper and Lower Deviation
Estimated mean �̃� = 𝜇 + ∆𝜇 of X with estimation error ∆𝜇 and

𝜇 = E{X} , X+ = {x ∈ X |x > �̃�} , X − = X∖X+, n = |X |

Upper and Lower deviation

𝛿− :=
1
n

∑︁
x−∈X −

(�̃� − x−) , 𝛿+ :=
1
n

∑︁
x+∈X+

(x+ − �̃�) (4)

Practical calculation

𝛿+t = 𝛾 · 𝛿+t−1 + (1 − 𝛾) ·𝜙(𝜉t , 𝜈t ) (5)

𝛿−
t = 𝛾 · 𝛿−

t−1 + (1 − 𝛾) ·𝜙(𝜈t , 𝜉t ) (6)

𝜙(a, b) =

{︃
a − b , if a > b

0 , else
(7)

◁ Back
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Oscillation

𝛿+ + 𝛿− =
1
n

⎛⎝ ∑︁
x∈X+

(x − �̃�) +
∑︁

x∈X −

(�̃� − x)

⎞⎠ (8)

=
1
n

∑︁
x∈X+

(x − 𝜇) − ∆𝜇 +
1
n

∑︁
x∈X −

(𝜇 − x) + ∆𝜇

=
1
n

∑︁
x∈X

|x − 𝜇|

◁ Back
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Trend

𝛿+ − 𝛿− (4)
=

1
n

∑︁
x∈X

(�̃� − x) =
1
n

∑︁
x∈X

(𝜇 + ∆𝜇 − x) (9)

=
1
n

∑︁
x∈X

(𝜇 − x)⏟  ⏞  
=0

+
1
n

∑︁
x∈X

∆𝜇 = ∆𝜇

◁ Back
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