CapLibrate: Self-Calibration of an Energy Harvesting Power Supply with Supercapacitors

Christian Renner and Volker Turau

GI/ITG Workshop on Energy-aware Systems and Methods 22nd February, 2010

Institute of Telematics TUHH Hamburg University of Technology

Introduction

Modern Wireless Sensor Nodes

- Low-Power Components
- Energy Harvesting Power Supply
- Energy Buffer

Modern Wireless Sensor Nodes

- Low-Power Components
- Energy Harvesting Power Supply
- Energy Buffer

Unattended Operation \Rightarrow Power Management

Energy Awareness

Knowledge of available energy \Rightarrow Energy Awareness

Benefits for known task energy costs

- Lifetime prediction
- Efficient use of available energy resources, e.g.,
 - Energy-aware scheduling
 - Energy-aware network-wide decisions
 - \rightarrow routing, clustering, ...
- Low risk of energy starvation
- Perpetual operation

SuperCaps – the Good News

- Small and light-weighted
- Long lifetime
- Virtually unlimited charge/discharge cycles
- Simple charging circuit
- Easy estimation of stored energy

$$T_{
m life} = rac{\eta C}{2 P_{
m N}} \left(V_{
m C}^2 - V_{
m min}^2
ight)$$

SuperCaps – the Good News

- Small and light-weighted
- Long lifetime
- Virtually unlimited charge/discharge cycles
- Simple charging circuit
- Easy estimation of stored energy

$$T_{
m life} = rac{\eta C}{2 P_{
m N}} \left(V_{
m C}^2 - V_{
m min}^2
ight)$$

SuperCaps – the Good News

- Small and light-weighted
- Long lifetime
- Virtually unlimited charge/discharge cycles
- Simple charging circuit
- Easy estimation of stored energy

$$T_{
m life} = rac{\eta C}{2 P_{
m N}} \left(V_{
m C}^2 - V_{
m min}^2
ight)$$

The Bad News

Capacity C depends on

- manufacturing variation
- temperature
- age

Circuit efficiency η depends on

- actual DC-DC-efficiency
- manufacturing variation
- part tolerances
- hardware revisions (different parts)

Manual calibration infeasible in large networks

The Bad News

Capacity C depends on

- manufacturing variation
- temperature
- age

Circuit efficiency η depends on

- actual DC-DC-efficiency
- manufacturing variation
- part tolerances
- hardware revisions (different parts)

Manual calibration infeasible in large networks

Dish of the Day

Self-Calibration

Theory in Praxis

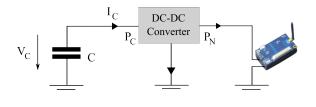
Christian Renner CapLibrate: Self-Calibration of an Energy Harvesting Power Supply with Supercapacitors

5

Analytical Assessment

Resistance Discharging

$$V_{\rm C} = V_{\rm C0} \cdot {\rm e}^{-{\Delta T \over RC}}$$


6

Resistance Discharging – Solution

$$C = \frac{\Delta T}{R} \cdot \ln^{-1} \left(\frac{V_{\rm C0}}{V_{\rm C}} \right)$$

Christian Renner CapLibrate: Self-Calibration of an Energy Harvesting Power Supply with Supercapacitors

Converter Discharging

 $E_{\mathrm{C}} = E_{\mathrm{out}} \qquad \Longleftrightarrow \qquad rac{C \cdot \left(V_{\mathrm{C}0}^2 - V_{\mathrm{C}}^2\right)}{2} = rac{\Delta T \cdot P_{\mathrm{N}}}{\eta}$

Converter Discharging – Solution

$$\textit{C} = \frac{2 \cdot \Delta T \cdot \textit{P}_{\rm N}}{\eta \cdot \left(\textit{V}_{\rm C0}^2 - \textit{V}_{\rm C}^2\right)}$$

Christian Renner CapLibrate: Self-Calibration of an Energy Harvesting Power Supply with Supercapacitors

Evaluation

Environment

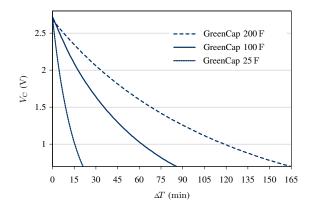
- Crossbow IRIS node with TinyOS 2.1
- Sampling of V_C via node's ADC Averaging 4 readings to reduce noise
- Sending result via radio to PC
- Samwha GreenCaps: *C* = 25 F, 100 F, 200 F
- Initial value of $V_{\rm C}$ = 2.7 V
- Reference voltages $V_{\rm C0} = 1.5 \,\mathrm{V}, 2.0 \,\mathrm{V}, 2.5 \,\mathrm{V}$

Discharging Setups

1. Stand-alone Resistance Discharging

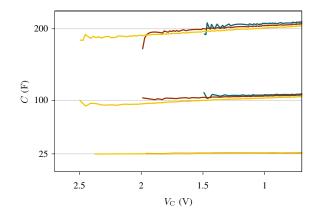
- $R = 36.1 \Omega$
- Node powered by battery

2. Combined Resistance Discharging > Math

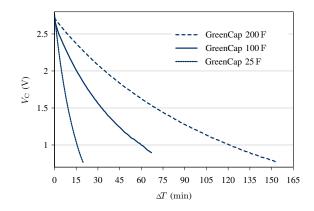

- $R = 35.6 \Omega$, switched via MOSFET
- Node powered by SuperCap
- $P_{
 m N} <$ 100 $\mu {
 m W}$ (sleep mode)

3. Converter Discharging

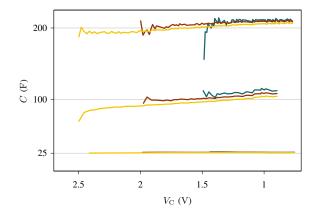
- Node powered by SuperCap
- $P_{\rm N} = 51.2 \,\mathrm{mW}$ (radio on)


•
$$\eta \approx 85 - 91\%$$
 for $V_{\rm C} = 1.5 - 2.5 \,{\rm V}$

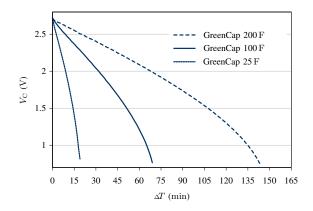
Stand-alone Discharging: Voltage


- Linear influence of C
- Exponentially decreasing V_C

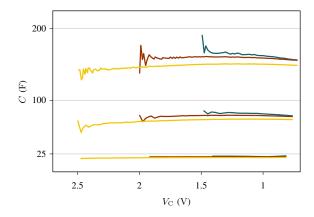
Stand-alone Discharging: Capacitance


- C slightly increasing for smaller $V_{\rm C}$
- \blacksquare Notable influence of sampling errors for $\Delta V_{\rm C} < 0.1\,{\rm V}$

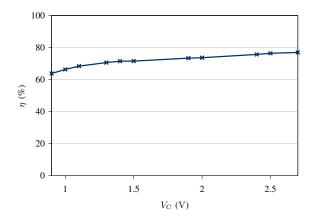
Combined Discharging: Voltage


Node power does not influence measurement significantly

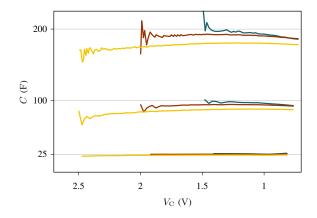
Combined Discharging: Capacitance


Comparable results as before \Rightarrow approach feasible

Converter Discharging: Voltage


- Linear influence of C
- Square-root shape

Converter Discharging: Capacitance


- Massive underestimation of C
- Heavy influence of V_{C0}

Circuit Efficiency

Circuit efficiency considerably lower than converter efficiency

Converter Discharging: Capacitance Revisited

Still heavy influence of V_{C0}: Large influence of leakage (discharging current lower than for resistance approach)

Summary

- Capacity estimation using resistance discharging is practicable
 - Low voltage drop needed ($\Delta V_{\rm C} \approx 0.1 \, {\rm V}$)
 - Quick measurement possible ($\Delta T < 10 \min$ for C = 200 F)
 - Good results
- Converter discharging has problems
 - Low current leads to high influence of leakage current
 - Good results only for low V_C
 - but can be used for efficiency determination

Roadmap for Online Capacity Determination

Initial estimation

- 1. Capacity determination
 - 1.1 Wait for appropriate $V_{\rm C}$ (e.g., 2V)
 - 1.2 Put node into sleeping mode, enable resistance discharging
 - 1.3 Wait until discovering needed $\Delta V_{\rm C}$ (e.g., 0.1 V)
 - 1.4 Estimate capacity C
- 2. Efficiency determination
 - 2.1 Disable resistance discharging
 - 2.2 Switch to high power mode
 - 2.3 Wait until discovering needed $\Delta V_{\rm C}$ (e.g., 0.1 V)
 - 2.4 Estimate efficiency η

Maintenance Repeat estimation in service intervals or when performance of (lifetime) prediction degrades

Conclusion

Conclusion

- Refinement of lifetime prediction by
 - estimating and updating capacity
 - tracking actual circuit efficiency
- Proposition of two possible methods
- Analytical and practical evaluation on real hardware
- Starting point for self-calibration of an energy-harvesting power-supply

Future Work

- Convert knowledge into software
- Run field tests
- Refine algorithm
- Flip the coin: assess prediction of harvested energy

CapLibrate: Self-Calibration of an Energy Harvesting Power Supply with Supercapacitors

Christian Renner and Volker Turau

GI/ITG Workshop on Energy-aware Systems and Methods 22nd February, 2010

Institute of Telematics TUHH Hamburg University of Technology

Combined Discharging

Energy obtained from SuperCap

$$\Delta E_{\rm C} = \frac{1}{2} C \left(V_{\rm C}_0^2 - V_{\rm C}^2 \right) \tag{1}$$

Energy consumption of the converter

$$\mathsf{E}_{\rm out} = \frac{\Delta T \cdot \mathsf{P}_{\rm N}}{\eta} \tag{2}$$

Energy consumption of the resistor

$$E_R = \frac{V_{\rm C0}^2}{R} \int_0^{\Delta T} \mathrm{e}^{-\frac{2t}{RC}} \,\mathrm{d}t = \frac{C V_{\rm C0}^2}{2} \cdot \left(1 - \mathrm{e}^{-\frac{2\Delta T}{RC}}\right) \tag{3}$$

With
$$\Delta E_{\rm C} = E_{\rm out} + E_R$$

 $C \cdot \left(V_{\rm C_0^2} \cdot e^{-\frac{2\Delta T}{RC}} - V_{\rm C}^2 \right) = \frac{2 \cdot \Delta T \cdot P_{\rm N}}{\eta}$ (4)

▷ Back