A new Technique for proving Self-Stabilization
under the Distributed Scheduler*

Sven Kohler and Volker Turau

Institute of Telematics
Hamburg University of Technology
Hamburg, Germany
{sven.koehler, turau}@tu-harburg.de

Abstract. Proving stabilization of a complex algorithm under the dis-
tributed scheduler is a non-trivial task. This paper introduces a new
method which allows to extend proofs for the central scheduler to the
distributed scheduler. The practicability of the method is shown by ap-
plying it to two existing algorithms, for which stabilization under the
distributed scheduler was an open problem.

1 Introduction

The notion of self-stabilization was coined by E. W. Dijkstra [2]. Self-stabilizing
distributed systems are guaranteed to converge to a desired state or behaviour
in finite time, regardless of the initial state. Convergence is also guaranteed after
the system is affected by transient faults, no matter their scale or nature. This
makes self-stabilization an elegant and formal approach for non-masking fault-
tolerance.

Self-stabilizing algorithms can be designed with different schedulers in mind.
Possible schedulers include the central scheduler (only one node can make a move
in each step), the distributed scheduler (any number of nodes make a move in
each step), and the synchronous scheduler (all nodes make a move in each step).
In an early manuscript [B] (written 1973), Dijkstra discusses his choice of the
scheduler. Unsure, whether non-trivial algorithms for the distributed scheduler
exist, he decides to design his self-stabilizing algorithms for a “rather powerful
daemon, that may be awkward to implement”: the central scheduler. He points
out that his choice avoids difficulties like oscillation which may easily occur when
using the distributed scheduler.

The model of the central scheduler provides rather strong assumptions. They
make it easy to develop and prove correctness of self-stabilizing algorithms.
On the other hand, the distributed scheduler is the more realistic model. Even
though some algorithms that are designed for the central scheduler also stabilize
under the distributed scheduler, the majority of algorithms does not have this
property. In these cases new algorithms have to be devised or existing algorithms

* This research was funded by the German Research Foundation (DFG), contract
number TU 221/3-1.

have to be extended. For the latter case, generic methods have been invented:
transformers, for example Mutual Exclusion [I] and Conflict Managers [6]. It is
considered worthwhile (for example in [I]) to design algorithms for the central
scheduler and then transform them to the desired model. But these transforma-
tions come with a time overhead of at least O(A).

In case no transformer is applied, the stabilization proofs are usually very
problem-specific and do not allow for generalization. Generic proof techniques
such as potential functions and convergence stairs, that work well for the cen-
tral scheduler, are very hard to apply in case of the distributed scheduler. [Sec
[(ion 4 provides a generic technique for proving stabilization under the distributed
scheduler by extending existing proofs that assume the central scheduler. The
contribution of this paper is completed by in which the technique is
applied to two complex algorithms for which stabilization under the distributed
scheduler has not been proven and it has been an open question, whether this
is feasible at all. gives a case study of a protocol to which the proof
technique cannot be applied.

2 Related Work

Common techniques for proving stabilization include variant functions (also
called potential functions) and convergence stairs H]. In principle, all these do
apply to the distributed scheduler, but these techniques rely on properties of
transitions from one system configuration to another. In case of the distributed
scheduler, transitions are hard to analyse due to the large of number of possible
selections of simultaneously executed moves.

Two transformers that allow algorithms written for the central scheduler
to stabilize under the distributed scheduler are widely known. The first by
Beauquier et al. [I] solves the mutual exclusion problem: (a) at least one pro-
cess is privileged (b) only non-neighboring nodes are privileged (c) any node is
privileged infinitely often. Mutual exclusion allows algorithms designed for a fair
central scheduler to stabilize under an unfair distributed scheduler. The second
by Gradinariu et al. [B] implements the concept of conflict managers: (a) at least
one node is privileged (b) only non-conflicting nodes are privileged. Whether
two nodes are conflicting is defined by the symmetric relation R CV x V (the
so-called conflict relation). If R is chosen such that neighboring nodes are con-
flicting, then this allows algorithms designed for the central scheduler to stabilize
under the distributed scheduler.

Both transformers are partly based on the idea that the locally central sched-
uler (any number of non-neighboring nodes is privileged in each step) is virtually
identical to the central scheduler, since the behaviour of a node only depends
on the information stored in the node’s neighborhood. Hence, moves of non-
neighboring nodes can make their moves in an arbitrary order, or even simulta-
neously. The resulting configuration is always the same. It is rather restrictive
to demand that any order of moves is equivalent to their simultaneous execu-
tion. For a given set of moves, it suffices to show that one particular sequence is

equivalent. extends this idea to a technique, that allows to prove that
such a sequence exists for any set of enabled moves in any configuration. The
new proof-technique is directly applied to algorithms themselves, without any
transformer.

Proving probabilistic self-stabilization under the distributed scheduler of pro-
tocols designed for the central scheduler is surprisingly easy. In the fashion of the
scheduler-luck-game MJ, one can show that steps in which only non-neighboring
nodes simultaneously make a move exist with positive probability, if each move
depends on the outcome of an independent random experiment. In conclusion,
executions in which this is the case for every step exist with positive probabil-
ity. This has facilitated the construction of the probabilistic conflict manager by
Gradinariu et al. [6] and the transformations by Turau et al. [I0] and Herman [7].

3 Model of Computation

A distributed system is represented as an undirected graph (V, E) where V is
the set of nodes and E C V x V is the set of edges. Let n = |V] and A denote the
maximal degree of the graph. If two nodes are connected by an edge, then they
are called neighbors. The set of neighbors of node v is denoted by N(v) C V and
N[v] = N(v)U{v}. Each node stores a set of variables. The values of all variables
constitute the local state of a node. The configuration of a system is the n-tuple
of all local states in the system and X' denotes the set of all configurations.

Nodes communicate via locally shared memory, that is every node can read
the variables of all its neighbors. Nodes are only allowed to modify their own
variables. Each node v € V executes a protocol consisting of a list of rules. Each
rule consists of a guard and a statement. A guard is a Boolean expression over
the variables of node v and its neighbors. A rule is called enabled if its guard
evaluates to true. A node is called enabled if one of the rules is enabled.

Execution of the statements is controlled by a scheduler which operates in
steps. At the beginning of step 4, the scheduler first non-deterministically selects
a non-empty subset S; C V of enabled nodes. Each node in S; then executes
the statement of its enabled rule. It is said, that the nodes make a move. A
step is finished, if all nodes have completed their moves. Changes made during
the moves become visible to other nodes at the end of the step and not earlier
(composite atomicity).

An execution {(co,c1,ca,...), ¢; € X is a sequence of configurations ¢; where
co is the initial configuration and c; is the configuration of the system after the
i-th step. In other words, if the current configuration is ¢; and all nodes in S; 11
make a move, then this yields ¢;1.

Time is measured in rounds. Let x be an execution and xg = x. Then x
is partitioned into rounds by induction on i = 0,1,2,...: round r; is defined
to be the minimal prefix of z;, such that each node v € V has either made a
move or has been disabled at least once within r;. Execution z;4; is obtained
by removing prefix r; from x;. The intuition is that within a round, each node

that is enabled at the beginning of the round, gets the chance to make a move
if it has not become disabled by a move of its neighbors.

Let P be a protocol and let Legitp denote a Boolean predicate over X. If
Legitp(c) is true, then configuration c is called legitimate. P is said to be self-
stabilizing with respect to Legitp, if both the following properties are satisfied.
Convergence: for any execution of P, a legitimate configuration is reached within
a finite number of steps. Closure: for any execution of P it holds that once a
legitimate configuration is reached, all subsequent configurations are also legit-
imate. A self-stabilizing protocol is silent if all nodes are disabled after a finite
number of steps.

3.1 Nonstandard Extensions

The standard model as defined above is extended to a multi-protocol model. An
algorithm is denoted by a set A of protocols. Each node designates a separate
set of variables to each p € A. An instance is a tuple (v,p), v € V and p € A.
M =V x Ais the set of instances. Instance (v, p) is called enabled, if p is enabled
on node v. Node v is called enabled, if any p € A is enabled on v. Two instances
(v1,p1) and (v, p2) are called neighboring, if vi € Nuvs] or vice versa.

During the ¢-th step, a scheduler selects a subset .S; C M of enabled instances.
In case of the central scheduler it holds |S;| = 1. The distributed scheduler may
chose any non-empty subset S; of enabled instances, even containing several
instances of the same node but distinct protocols. If node v executes a rule by
protocol p € A, then it is said that v has made the move (v, p). No assumptions
on the fairness of the scheduler are made.

An instance (v, p) cannot modify any other variables than the ones designated
to protocol p by node v. Read access is permitted to all variables of all v € Nv],
no matter which protocol they belong to. For any pair of instances (v1,p1) and
(v2,p2) that are being selected during a single step, changes made by (v1,p1)
don’t become visible to (ve,ps) until the end of the step (composite atomicity),
even if v;1 = vo. Due to these constraints, the result of a step does not depend
on the order in which the individual moves are executed. This model defines a
natural extension of the notion of rounds. A round is a prefix of an execution,
such that every instance m € M has been executed or has been disabled at least
once. This model is identical to the standard model, if |A| = 1. How algorithms
designed for this model can be transformed to the standard single-protocol model
is discussed in

Without loss of generality, it is assumed that per instance only one guard can
be enabled at a time and that all rules are deterministic. How to widen the tech-
niques to a non-deterministic or randomized model is discussed in the
Using the assumption of deterministic protocols, the following notations
are defined: (¢ : m) denotes the configuration after the execution of m € M in c.
Similarly, (¢ : S) denotes the configuration after the simultaneous execution of
all instances S C M in a single step. The execution of a sequence of instances is
denoted by (c:mq:ma:...:imyz)=((c:my:ma:...iMmg_1):my), m; € M,
x > 1. These notations are used to describe executions by the central scheduler

or the distributed scheduler. Note that (¢ : m) and (¢ : S) are undefined, if m is
not enabled in ¢ or if S contains instances that are not enabled in ¢ respectively.

Furthermore, let ¢/, denote the part of configuration ¢ which reflects the
values of all variables dedicated to instance m. The expression ¢ - e denotes the
value of expression e in case that the current configuration equals c. Note, that
e can be a variable, function or Boolean predicate.

4 Serialization

To proof stabilization under the distributed scheduler, we first define the notion
of a serialization. A serialization of a set of enabled instances is a sequence
of instances, that can be executed under the central scheduler and yields the
same configuration as executing the set of instances during a single step of the
distributed scheduler.

Definition 1. Let ¢ be a configuration and S C M be a set of instances enabled
in c. A sequence s = (my,ma,...,my), m; € M is called a serialization of S
in c if it satisfies

(c:8)=(c:mq:mg:...:my) (1)
S is called serializable in c, if a serialization in c exists.

With respect to S, the serialization contains each instance m; € S at least
once. The simple reason is, that the serialization is required to modify c|y,,
which no instance other than m; is capable of. Apart from that, instances may
occur multiple times within the sequence. Even additional instances that are
not in S may be included, but their effect has to be compensated such that

holds again in the end.

Observation 2. The sequence (my, ma,...,mg), m; € M is a serialization of
S C M in c if and only if

(c:8)|m; =(c:my:ma:...:mg)|m, Vi=1,2,...,k
If my, mo, ..., my are distinct, then this is equivalent to
(c:8)|m; =(c:my:...:m;)|m, Vi=1,2,...,k

Furthermore, it is clear that (¢ : S)|m, = (¢ : m;)|m,-

The rest of this section lays the groundwork for a technique that facilitates the
construction of serializations. First, the notion of a ranking is defined. It assigns
a natural number (the rank) to each enabled instance. The rank describes the
behaviour of an instance (i.e. how it changes the variables) depending on the
current configuration. The goal is to obtain a serialization by sorting instances
by their rank.

Definition 3. The mapping v : M — NU {L} is called a ranking, if the
following conditions hold for any configuration:

r(m) = L if instance m is disabled

r(m) € N otherwise

For a given ranking it remains to show that sorting a set of instances by their
rank actually yields a serialization. As a step towards this, an invariancy relation
on instance/rank-tuples is defined. In general, this relation is not symmetric.

Definition 4. Let r denote a ranking. A tuple (ma,72) € M x N is called in-
variant under the tuple (my,7m1) € M x N, if the following two conditions hold
for all ¢ € X that satisfy r1 = ¢t r(my) and ro = ¢ r(ms):

(c:mq) Fr(mg) =ck r(ms)
(c:my:ma)|m, = (¢:Mm2)|m,

If the tuple (mg,r2) is invariant under (mq,r1), then the rank of my as well
as the result of the execution of ms remains the same, no matter whether my
has been executed prior to ms, or not. Note, that this invariancy holds for all
configurations, in which msy and m; have the given ranks r5 and r; respectively.
The following proposition illustrates, why this is useful.

Proposition 5. Let ¢ be a configuration, r a ranking, and my, mo, ms three
distinct enabled instances. If (ma, ¢k r(mz)) is invariant under (my,ct r(mq))
and (mg, ¢t r(ms)) is invariant under both (my,ct r(my)) and (me, c b r(ms2)),
then {(mq,ma,m3) is a serialization of {my, mq, ms} in c.

Proof. By it suffices to prove the following three equations:
(¢:m)lm, = (¢:m1)[m, (2)
(c:m2)lmy, = (¢:m1 :m2)|m, (3)
(c:m3)|ms = (c:mq 1 Mo :M3)|ms (4)

is clear. holds, because (mg,c F r(ms)) is invariant
under (mq,c - 7(m1)). In order to understand the validity of [Equation (4)]it is
necessary to take a closer look at the sequential execution of mq, mso, and ms.
Consider the intermediate configuration ¢/ = (¢ : my). Because (mg, c - r(ms)) is
invariant under (mq, ¢ F r(my)), it holds that (¢’ : mg)|m, = (¢ : M3)|ms. In order
for to be satisfied, it must be the case that (¢’ : ma : m3) equals
(¢’ : mg). This is true, if (ms,c F r(mg)) is invariant under (mg,c F r(ma)).
This becomes clear, if one considers that ¢’ F r(ms) = ¢ F r(mg3) as well as
¢ b r(my) = ¢k r(my) and that the invariancy of ms under ms holds no matter
whether the current configuration is ¢ or ¢'. a

Definition 6. A ranking r is called an invariancy-ranking, if
ro > r1 = (M, r2) is invariant under (my,r1)

holds with respect to r for all mg # my, ma,m; € M, ro,r1 € N.

Theorem 7. For an algorithm with an invariancy-ranking, every set of enabled
instances is serializable in any configuration.

Proof. Let r be an invariancy-ranking, ¢ a configuration, S C M a set of in-
stances enabled in ¢, and s = (my,ma,...,mk) a sequence of all instances of
S sorted in ascending order by their rank with respect to c¢. Denote by ¢, the
configuration (c¢:mj :mo:...:m,) and ¢y = c. Byit suffices to
prove ¢jlm; = (co : myj)|m; for j =1,2,... k.

In the following, it is shown by induction on 4 that (c;—1 : m;)|m; = (co :
m;)|m,; and ¢;_1 F r(m;) = co b r(m;) hold for all i = 1,2,....k and j =
1,7+ 1,..., k. This is obviously true for i = 1. Assume the following for i < k:

Ci—1 Fr(m;) =co - r(my) Vi=d,i+1,...,k

(Ci,1 ij)|mj :(cozmj)|mj Vi=d,i+1,...,k

By assumption, (m;,c;—1 b r(m;)) is invariant under (m;, ¢;—q1 F r(m;)) for all
j=1+1,i+2,..., k. Hence, the following is satisfied in ¢;:

ciFr(my) =ci—1 Fr(my) =co - r(my) Vi=i+1,i+2,...,k

(ci s M) |m; = (Cim1 :my)|m; = (co: Mj)|m; Vi=i+1,1+2,...,k
In particular, it follows that c;lm, = (cj—1 @ mj)|lm; = (co : my)|m,; for all
i=1,2,... .k O

Corollary 8. For any execution e under the distributed scheduler of an algo-
rithm with an invariancy-ranking, there exists an execution €’ under the central
scheduler such that e is a subsequence of €.

Theorem 9. For an algorithm with an invariancy-ranking, move- and round-
complexity under the central scheduler are upper bounds for the move- and round-
complexity under the distributed scheduler.

Proof. See O

5 Practicability

In the following, the new proof technique is applied to two algorithms, one from
[and the other from [§]. Both algorithms are transformers that add fault-
containing properties to any silent self-stabilizing protocol P. Prior to this paper,
it has been an open problem whether these algorithms work under the distributed
scheduler.

The overall procedure to first design a ranking of which it is shown that it is
an invariancy-ranking. This is done by inspecting all pairs (r2,71) of ranks that
satisfy ro > r1. For each pair, it is shown that all (mq,r2) are invariant under
any (mi,r1). More my is called invariant under mq, if (me,r2) is invariant
under (mq,r) for all ranks 9,71 € N. The following observation justifies, that
the proofs only consider the case that my and my are neighboring.

Observation 10. Let r be a ranking, and let ms and my be two non-neighboring
moves. If r(mg) solely depends on variables in the neighborhood of mg, then mo
is invariant under mj.

5.1 Algorithm A,

First, algorithm A; = {@Q} by Ghosh et al. [{ is analysed. The algorithm is
actually a transformer, that is protocol @ internally calls a given silent self-
stabilizing protocol P and extends P by fault-containment properties. The goal
of fault-containment is to minimize the time that a protocol needs to recover
from small scale faults. This property is combined with self-stabilization which
guarantees recovery from large scale faults. Protocol @) basically is a silent phase
clock, with a limited clock range of [0, M]. During stabilization, the timestamps
are decremented towards 0 in an evenly fashion until every node has reached
0. Along with this decrementation, three protocols are executed: C, P, and B.
Protocol C' is executed for upper range timestamps and repairs corrupted P-
variables using backups stored on each neighbor. It consists of three phases that
are executed by) in a synchronous fashion. For mid-range timestamps, P is
executed by @ and is given enough time to stabilize before B, which is executed
for lower range timestamps, creates the backups. Timestamps are globally reset
to M if an inconsistency or a fault is detected. For details refer to [G.

Protocol @ is implemented in form of two rules. Each node v € V stores its
timestamp in the variable v.t. Rule S; resets v.t to M, if PorC__inconsistent(v)
or raise(v) is satisfied.

raise(v) = raise1 (v) V raises(v)
raise1(vV) = vt #FMAFueENw) vt —ut>1Aut <M-—n
raisea(v) = vt < M —nAJue Nw):ut=M
PorC_inconsistent(v) = v.t =0A (Vu € N(v) : u.t =0)
A (Gp(v) V ~Legito(v))
The predicate Gp(v) is true if and only if P is enabled on v. The predicate
Legito(v) is true if and only if any backup differs from the current values of
P-variables. If decrement(v) is true, rule Sy first executes a move of C' if v.t €
[M —2,M], a move of P if v.t € [3, M — max{n,3}], or a move of B if v.t =2
and then decrements v.t by one. The local state of protocol P for node v is held
in the variable v.z which is called primary state.
decrement(v) = decrementy(v) V decrementa(v)
decrementy(v) = vt > 0AVu € N(v): 0 <wvit—wut<1
decrements(v) =Vu € N(v) vt > ut Aut>M —n

To obtain serializations, the following ranking is used:

0 it decrement(v)
r(v,p) =<4 M —wv.t if raise(v) V PorC_inconsistent(v)
L otherwise

Note, that raise(v)V PorC__inconsistent(v) implies v.t < M and thereby r(v, Q) >
0. So all instances of rank 0 decrement v.t and all others reset it to M.

The ranking r is designed in such a way that decrementations occur first
within a serialization. Their order is not significant since a decrement move does
not disable any neighboring instances. This is due to the pseudo-consistence
criteria as defined in [B]. Next, all raise moves occur within the serialization,
sorted by their timestamp in descending order. The following example illustrates
why this is necessary: Consider a node v which is surrounded by nodes with a
timestamp equal to 0 while v.t = M —n. In this configuration, node v is enabled
by raise;(v). It is possible, that all neighbors of v are enabled by raises(v). If
the neighbors of v make a raise move before v does, then v.t becomes pseudo-
consistent, and hence v becomes disabled.

Observation 11. decrement;(v) as well as decrements(v) imply v.t > w.t for all
u € N(v). So if decrement(v) and decrement(u) hold for two neighboring nodes
v and u, then v.t = u.t is true.

Lemma 12. Assume that there exists an invariancy-ranking for each of the pro-
tocols P, C and B. Spreading rank 0 of r according to these invariancy-rankings
(and shifting the higher ranks accordingly) yields an invariancy-ranking for al-
gorithm Aj.

Proof. In the following, ms and m; denote moves by nodes v, and v; respec-
tively. ¢ denotes a configuration such that ro = ¢ F r(msg) and r; = ¢ F r(my).
Furthermore, ¢’ denotes the configuration (¢ : m1). Instances ms and my are
assumed to be neighboring. This is justified by [Observation 10}

Case a) ro = 1 = 0: The assumption yields ¢ F decrement(vz) and ¢
decrement(vy). From that andit follows that ¢ - vq.t = vq.t and
vt =wvt — 1. If ¢ F decrement; (vg), then ¢’ b decrement; (v). Otherwise
¢ F (decrements(ve) A —~decrement;(vg)) from which ¢ b ve.t > M — n follows
and thereby ¢’ - vy.t > M —n and ¢’ F decrements(vs).

Case b) 1 < ro < M Ary = 0: Because of r; = 0, ¢ b decrement(v1) and
thus ¢ F v1.t > 0 must hold. ¢ - PorC _inconsistent(ve) cannot be satisfied,
since it requires ¢ - v1.t = 0. If ¢ F raise;(vs), then there exists some node
w € N(vg) with ¢ F (va.t —w.t > 1Awt < M —n). ¢k wt < N —n implies
¢ F —decrementa(w) and ¢ F w.t — vg.t < —1 implies ¢ F —decrement; (w).
Hence v1 # w, | = ¢l and thus ¢ + raise;(vy). If ¢ b raises(vy), then
¢k ve.t < M —n and there exists some node w € N(vg) with ¢ F w.t = M.
¢ b wt —vot > 1 implies ¢ F —decrement;(w) and ve.t < M — n implies
v b —decrements(w). Hence vy # w, | = ¢y and thus ¢’ b raises(vq).

Casec) 1<ra < MAL1<r <ro:Ifckuvet <M —mn, then ¢ F raises(vs)
since ¢’ b vy.t = M. Otherwise ¢ b vy.t > M — n which implies ¢ - —raises(v2)
and ¢ = = PorC_inconsistent(ve). and thus ¢ F raise;(ve). Hence there exists
some node w € N(vg) with ¢ F (w.t < va.t Aw.t < M —n). From r < rg it
follows that ¢ vy.t > va.t. Hence vy # w, /|, = ¢l and thus ¢’ F raise; (vs).

In all cases ¢’ F r(m2) = ¢ F r(m2). Furthermore, it is assumed that the
moves of rank 0 are sorted in such a way that the order of mo and m; matches

a serialization of either protocol P, C' or B, depending on v;.t and wvs.t which

are equal by [Observation 11} Hence (¢’ : mga)|m, = (¢ : ma)|m, in all cases. O

Theorem 13. If there exists an invariancy-ranking for each of the protocols P,
C and B, then for any execution e of Ay under the distributed scheduler there
ezists an execution €' under the central scheduler such that e is a subsequence of

e.

5.2 Algorithm A,

In this section, algorithm Ay = {Q, R1,Ra,...,Ra} by Kohler et al. [§] is
discussed. It implements a different approach to add fault-containment to any
given silent self-stabilizing protocol P. It offers several improvements over algo-
rithm A;: a constant fault-gap (that is the minimal time between two containable
faults), strictly local fault repair without any global effects, and a stabilization
time similar to the original protocol P (besides a constant slow-down factor).

Every node v € V designates one of the A protocols R; to each of its
neighbors. For notational convenience, the algorithm is defined to be a map-
ping A : v = {Q}U{R, | v € N(v)} that assigns a set of protocols to each
v € V. In spite of this notation, algorithm As is still uniform. The behaviour of
the algorithm is best described based on the notion of a cell. For v € V| cell v
consists of the instance (v, @) and the instances (u, R,), u € N(v). Cells execute
cycles of a simple finite state-machine. During a cycle, cells first repair corrupted
variables. The cycle is always guaranteed to start with the repair, even after a
fault. Cells then check, whether there are any corruptions in their neighboring
cells and if so, they wait for them to become repaired. Only after that, a single
move of P is executed and as a final step backups of the variables of protocol P
are created. To achieve this behaviour, there is a constant dialog between (v, Q)
and all instances of R,. For details refer to [g].

The instance (v, Q) maintains three variables: v.s,v.q € Z4 and v.p, which
is also called primary state and stores the local state of protocol P for node v.
Each of the variables v.s and v.q can assume one of the four states 0 = PAUSED,
1 = REPAIRED, 2 = EXECUTED, and 3 = COPIED. If v.s # v.q, then (v.s,v.q) is
called a query for a transition from state v.s to v.q. An instance (u, R,) maintains
the following variables: u.r, € Z4, u.d, € Zs, and u.c,. One of the four state
values is assigned wu.r,. The so-called decision-variable u.d, assumes one of the
values KEEP, UPDATE, and SINGLE. The copy-variable u.c, is used for storing
backups of v.p.

Protocol @ consists of three rules. If —dialogConsistent(v), then instance
(v, Q) resets v.s and v.q to PAUSED if they do not already have that value
(Rule 1). If dialogPaused(v) A startCondg(v), then (v, Q) sets v.g to REPAIRED
(Rule 2). If dialogAcknowledged(v), then (v, Q) calls procedure actiong(v), sets
v.s to v.q, and if v.qg # PAUSED, then v.q is incremented (Rule 3). Note, that
only one guard of (v,Q) can be true at a time. Protocol R, consists two rules.
If v.s and v.q equal PAUSED, then instance (u, R,) sets u.r, to PAUSED if it

10

doesn’t have that value already (Rule 1). If walidQuery(v) is true and predi-
cate waitCondp,(u) is false, then (u, R,) sets u.r, to v.q and calls procedure
actiong, (u) (Rule 2). Again, only one guard of (u, R,) can be true at a time.

validQuery(v) = v.qg = (v.s + 1) mod4
dialogConsistent(v) = (v.qg = v.s = PAUSED V wvalidQuery(v))

AYu € N(v) : u.ry, € {v.s,v.q}
dialogAcknowledged(v) = validQuery(v) AVu € N(v) : u.r, = v.q
dialogPaused(v) = v.q = v.s = PAUSED A Vu € N(v) : u.r, = PAUSED

copyConsistent(v) =Vu € N(v) : u.c, = v.p
repaired(v) = copyConsistent(v) V (dialogConsistent(v)
A (v.s = REPAIRED V v.s = EXECUTED)
AYu € N(v) : (u.r, = COPIED = u.c, = v.p))
startCondg(v) = —copyConsistent(v) V Gp(v)
waitCondg, (u) = v.g = EXECUTED A —repaired(u)

Procedure actiong(v) performs the following actions: If v.¢ = EXECUTED, then
a move of protocol P is executed. If v.¢ = REPAIRED, then v.p is checked for
corruptions by using the backups provided by protocol R,. If all backups have
the same value and v.p differs, then v.p is updated. If there is only one neighbor
u € N(v) and hence only one backup, then v.p is only updated if u.d,, = UPDATE.
Procedure actiong, (u) performs the following: If v.¢ = COPIED, then w.c, is
updated with the value of v.p. If v.¢ = REPAIRED, then wu.d, is set to either
KEEP or UPDATE depending on whether v.p := u.c, would disable P on both
and v.

The case that the network contains a single edge only is not covered by the
above description of actiong and actiong,. In case of the distributed scheduler,
it needs special treatment like symmetry breaking which is not included in the
original version as given in [§]. The following describes a possible solution: Let u
and v be neighbors and the only nodes of the system. The special value SINGLE,
which is assigned to v.d, and wu.d, in this case, allows the detection of this
case. The version of protocol actiong as given [§ would execute both of the
assignments v.p := u.p and u.p := v.p if both v and u are selected in the same
step by the distributed scheduler. Either one of the two assignments leads to a
legitimate configuration, but in most cases the execution of both does not. Let
v be the node with the lower Id. actiong can be altered in such a way that
v.p = u.p is not executed if u.p := v.p leads to a successful repair.

The following ranking r is used to obtain serializations. For convenience, the
predicate R(x) is used in the definition of r(v,p). It is satisfied if and only if

11

rule z of instance (v, p) is enabled.

it p=0QA((R(3) ANv.q # EXECUTED) V R(1))
otherwise

1 if3ue N(v):p= Ry AR(2) Au.q = REPAIRED
2 if Jue N(w):p= Ry A ((R(2) Au.qg # REPAIRED) V R(1))
(v,p) i= 3 ifp=QAR(2)
P = g if p=Q A R(3) A v.g = EXECUTED
5
1

With this ranking, any serialization will first execute all moves, that set de-
cision variables. Their value is determined by the evaluation of guards of proto-
col P which references the primary states of various cells. Hence it is important,
that the primary states have not been changed yet (which is only done by in-
stances of rank 4, or 5). Next, all all other moves by instances of protocol R,
occur within the serialization. These do not reference any of the variables that
have been changed previously. All instances of @ follow. They are categorized
into three different ranks. Instances that are enabled due to rule 2 of) are ex-
ecuted first to avoid the danger that this rule becomes disabled which is due to
startCondg(v) that checks whether protocol P is enabled for node v. Instances
of rank 4 follow. They execute a single move of P and hence may change primary
states. The fact that all moves of P fall into the same rank has the advantage,
that invariancy-rankings for protocol P can be used to extent r to an invariancy
ranking for algorithm A5. Last, all instances of rank 5 occur within the serializa-
tion. These moves do not read any primary states and their behaviour is hence
not influenced by any of the changes done by previous instances of Q.

Lemma 14. If cell v is not dialog-consistent, then (v, Q) is invariant under any
(u, Ry) with w € N(v).

Lemma 15. If cell v is dialog-consistent, then (v, Q) is invariant under any
(u, Ry) with w € N(v).

Lemma 16. Let v be a cell. (v, Q) is invariant under any (u, R,,) with u € Nv]
and w # v.

Lemma 17. Assume, that an invariancy-ranking for protocol P exists. Spread-
ing rank 4 of r according to this invariancy-ranking (and shifting the higher ranks
accordingly) yields an invariancy-ranking for algorithm As.

Proof. The proof of case 5 € {3,4,5} Ary € {1,2} is based on Lemmas [14]
and A detailed proof of those lemmas and a proof covering all other cases of
ro and 71 is given in the [Appendix} O

Theorem 18. If there exists an invariancy-ranking for protocols P, then for

any ezxecution e of Ay under the distributed scheduler there exists an execution
e’ under the central scheduler such that e is a subsequence of €.

12

5.3 Proof refinement

The results of Theorems [13] and [1§] do not only guarantee stabilization under
the distributed scheduler. They guarantee, that the algorithms behave exactly
as under the central scheduler, in all aspects — for example with respect to time-
complexity and fault-containment properties. Yet, Theorems [I3] and [I§| require
that an invariancy-rankings for protocols P, C', and B exist. This requirements
can be relaxed.

Protocol C' must show correct behaviour only if the initial configuration is
1-faulty. Such configurations are derived from a legitimate configuration by per-
turbing variables of a single node. Indeed, an invariancy-ranking can be found
under these assumptions. For any other initial configuration, C' may show an
arbitrary behaviour. The invariancy ranking for B is simply rg (v, p) := 0. Pro-
tocol B never reads the variables that it writes.

With respect to P, both A; and Ay solely rely on the property that P
terminates after a finite number of steps of the given scheduler. There is no
other requirement concerning the behaviour of P. For each single step S; € M
of the distributed scheduler, the sequence obtained by sorting S; by the rankings
given above yields a configuration that differs from the execution of S; only in
the primary states of those nodes that make a P-move during the execution
of S;. In addition, it can be shown that P successfully progresses towards its
termination during the execution of S;.

Furthermore, it is easy to transform a given algorithm A = {p1,pa,...,pr}
for the multi-protocol model into an algorithm As = {q} for the ordinary single-
protocol model. In [B], a composition is used for the case of the central scheduler.
The idea is to sequentially execute the individual p; within a single move of ¢. Due
to the nature of the central scheduler as defined in the multi-protocol model it is
not a problem that the changes made by p; become visible to p;;; immediately.
In case of the distributed scheduler, a different transformation is needed. Again,
all of the p; are executed sequentially during a single move of ¢q. But to emulate
composite atomicity, the changes made by any p; are hidden from any p;, j # ¢
until the end of the move of ¢q. This may cost some memory overhead which can
be avoided by finding a special invariancy-ranking only for serializing instances
on a single node. In that style, the protocols of algorithm A can be executed
in the order (Ry, Ra, ..., Ra, @). We would like to emphasize, that one round of
A is equivalent to one round of A.

6 Impossibility

Unfortunately, serializations do not always exist. This is the case for the MIS-
protocol proposed in [@ which has been especially designed for the distributed
scheduler. The proof of stabilization for the distributed scheduler is not straight
forward [@]. In the following, the basic obstacles that prevent the application of
the new proof technique are explained.

The protocol assigns one of the three states OUT, WAIT, and IN to each
node. If a node is in state OUT and does not have a neighbor in state IN, then

13

its state is changed to IN (Rule 1). A node in state WAIT changes its state to
OUT, if it has a neighbor in state IN (Rule 2). A node in state WAIT changes its
state to IN, if it does not have a neighbor in state IN and all neighbors in state
WAIT have a higher Id (Rule 3). A node in state IN switches to state OUT, if
it has a neighbor in state IN (Rule 4).

As a first example, consider two neighboring nodes v and u, both in state IN,
while all their neighbors are in state OUT. If the distributed scheduler selects
both v and v during a single step, then both simultaneously switch to state to
OUT. Note, that the state of u is the only reason that v is enabled and vice
versa. Under the central scheduler, one of the two nodes becomes disabled after
the first move and remains in state IN. Hence no serialization exists.

Now imagine that v is in state WAIT and u is in state OUT, while all their
neighbors are in state OUT again. Furthermore, assume that the Id of node u is
higher then the Id of v. If the distributed scheduler selects both v and u during
a single step, then v sets its state to IN by Rule 3 and u switches to state WAIT
by Rule 1. Again, there is no serialization because a move by v disables u and
vice versa.

For the sake of optimization, [@] proposes a modified version of Rule 4. Rule 4’
only sets the state to OUT, if there is an IN-neighbor with a lower Id. This allows
serializations of the first example by sorting the moves in descending order by
the Ids. The node with the lowest Id serves as a “final cause” of the moves by
the other nodes. Furthermore, it is possible to modify Rule 1 in such a way
that nodes only switch from OUT to WAIT, if there is no WAIT-neighbor with
a lower Id. Then the second example becomes serializable as well. Obviously,
in order for serializations to exist, situations in which moves disable moves of
neighboring nodes must be avoided or at least, it must be possible to resolve
these conflicts by sorting.

7 Concluding Remarks

This paper has described a new technique for proving self-stabilization under
the distributed scheduler. The task of proving self-stabilization is reduced to the
task of finding an invariancy-ranking. The proof that a given ranking is indeed
an invariancy-ranking is solely based on properties of sequential executions of
pairs of moves under the central scheduler. The new technique has been suc-
cessfully applied to two algorithms. Even more, guarantees, that all
properties of the algorithms are preserved. In particular, by Theorems [I3] and
the two algorithms are the first transformers for adding fault-containment
to self-stabilizing protocols that are known to work under the distributed sched-
uler. It has also been discussed that algorithms exist which stabilize under the
distributed scheduler, but for which it is impossible to find serializations. Fur-
thermore, rankings may exist that yield serializations but are not invariancy-
rankings. We're not aware of any examples for the latter.

It remains to be investigated, how serializations can be found other than sim-
ply by sorting moves. Instances may occur multiple times or additional instances

14

may be included in the serialization. Randomized protocols or non-deterministic
choices by the scheduler are not a problem. Both issues can be solved by extend-
ing the instance tuple with information about the scheduler’s choice (the rule
number) and the outcome of the random experiment during the move. This way,
the information becomes part of the ranking. Another possibility is to generalize
the notation (¢ : m) to {c: m} which denotes the set of configurations reachable
from ¢ € X' by the execution of an instance m € M.

References

1. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. In: Proceedings of the 14th International
Conference on Distributed Computing. Lecture Notes in Computer Science, vol.
1914, pp. 223-237. Springer, Berlin, Germany (2000)

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643-644 (1974)

3. Dijkstra, E:ZW.: EWD 391, self-stabilization in spite of distributed control. In: Se-
lected writings on computing: a personal perspective, pp. 41-46. Springer, Berlin,
Germany (1982), originally written in 1973

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge, MA, USA (2000)

5. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-
stabilizing distributed protocols. Distributed Computing 20(1), 53-73 (2007) [7]
g

6. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fair-
ness assumption. In: Proceedings of the 27th IEEE International Conference on
Distributed Computing Systems. p. 46. IEEE Computer Society, Los Alamitos,
CA, USA (2007)

7. Herman, T.: Models of self-stabilization and sensor networks. In: Proceedings of the
5th International Workshop on Distributed Computing. Lecture Notes in Computer
Science, vol. 2918, pp. 205-214. Springer, Berlin, Germany (2003)

8. Kohler, S., Turau, V.: Fault-containing self-stabilization in asynchronous systems
with constant fault-gap. In: Proceedings of the 30th IEEE International Conference
on Distributed Computing Systems. pp. 418-427. IEEE Computer Society, Los
Alamitos, CA, USA (2010)

9. Turau, V.: Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Information Processing Letters
103(3), 88-93 (2007)

10. Turau, V., Weyer, C.: Fault tolerance in wireless sensor networks through self-
stabilization. International Journal of Communication Networks and Distributed
Systems 2(1), 78-98 (2009)

Appendix

Let ¢ denote a configuration. The changeset of (¢ : m) is the set of variables that
have changed between ¢ and (¢ : m).

Proof . Let ¢ be a configuration, in which both ms = (v,Q) and

my = (u, R,) are enabled. Let ¢ denote the configuration (¢ : m1). Rules 2 and

15

3 of mg are disabled in ¢ since they require dialogConsistent(v). Only rule 1
of mg is enabled in ¢ and hence ¢ F (v.s # PAUSED V v.q # PAUSED). In
conclusion, rule 1 of m; is disabled and only rule 2 is enabled in ¢. Thus ¢
(validQuery(v) A u.r, = v.s). From this and ¢ F —dialogConsistent(v) it follows,
that a node w € N(v) exists for which ¢ - w.r, & {v.s,v.q}. Hence w # u and
¢'|w = ¢|w which implies ¢’ F —dialogConsistent(v) and ¢ b r(msg) = ¢+ r(ms).
Rule 1 of mq sets both v.s and v.q to PAUSED. Hence (¢’ : m2)|m, = (¢, m2)|m,-

O

Proof , It is shown, that no configuration exists, in which both (v, Q)
and (u, R,) are enabled. If dialogConsistent(v), then rule 1 of (v, Q) and rule 1
of (u, R,) are disabled. If rule 2 of (u, R,) is enabled, then validQuery(v) and
u.r, = v.s holds. Hence, neither dialogPaused(v) nor dialogAcknowledged(v) and
rules 2 and 3 of (v, @) are disabled. O

Proof (Lemma 16). Let ¢’ denote (c : (u, R,)). The changeset of ¢ is a subset
of {u.ry, u.dy, u.cy }. Rank, guards and statements of (v, Q) only reference vari-
ables from cell v and primary states of neighboring cells. These are not in the
changeset of ¢. O

Proof (Lemma 17). In the following, ms and m; denote two distinct instances
of nodes vy and vy and cells uy and wu; respectively. For the given ranks 79,71,

the variable ¢ denotes a configuration which satisfies 7“2 =ct r(mg) = ry and
r1 = c b r(my) and ¢ denotes the configuration (¢ : my). By [Observation 10}

only the case that mo and m; are neighboring instances is considered.

Case a) 7 = 1 Ar; = 1: The assumption yields rule 2 of both mo and my
is enabled in ¢ and that ¢ - u;.q = us.¢ = REPAIRED. Because of ¢ F u;.q, the
changeset of ¢ is {vy.ry,,v1.dy, }. Hence, ¢’ I uy.q = REPAIRED holds and thus
¢+ —waitCondg,, (v2). Besides waitCondg,,, (v2), the guard of rule 2 of my only
references the variables va.ry,, 2.5, and ug.q which are not in the changeset of
¢’. So rule 2 of my remains enabled in ¢ and thus ¢ - r(mgy) = ¢ r(my). Since
¢+ u2.g = REPAIRED, the output of (¢’ : ma)|m, only depends on the variable
u9.q, primary states, and copy variables which are not part of the changeset of
c.

Case b) ro = 2Ar; € {1,2}: At worst, the changeset of ¢ is {vy.74,, v1.Cuy, V1.dy, }-
The predicate waitCondg,, (v2) is the only part of the guards of mg which might
reference these variables, namely in the case v = w;. By B LEMMA 4] ¢ F
repaired(v) = ¢’ & repaired(v). Hence ¢ - waitCondg,, (v2) = ¢’ - ~waitCondg,, (v2).
and the rule of mgy that is enabled in ¢ is still enabled in ¢. It follows that
'k r(mg) = ¢k r(my). Since my is of rank 2, it sets vg.ry, to uz.q and possibly
updates vy.¢,, with ug.p. Both us.q and us.p are not among the changeset of ¢
and thus (¢ : ma)|m, = (¢: M2)|m,-

Case c) ro € {3,4,5} Ay € {1,2}: If uy # uo, then [Lemma 16| applies. If
¢ b dialogConsistent(us), then[Lemma 15|applies. If —(c - dialogConsistent(us)),
then applies.

Case d) ro € {3,4,5} Ary = 3: Then vy # vq, since there is only one instance
of protocol @ per node. The changeset of ¢’ is {v1.q}. These variables are not

16

referenced by any guard or statement of ms. Hence, ¢’ F r(ms) = ¢+ r(ms) and
(" :ma)lmy = (¢t m2)|m,.

Case e) 1o = 4 A1y = 4: Again v; # ve. The changeset of ¢ is a subset
of {v1.s,v1.q,v1.p}. The guard of rule 3 of my does not reference any of these
variables. Hence ¢/ F r(mg) = ¢ F r(msy). The statement of rule 3 doesn’t
reference any variables in the changeset of ¢/, except for v;.p which is referenced
only during the execution of protocol P. Hence, (¢ : m2)|m, = (¢ : m2)|m,, if
mg and m; are sorted according to an invariancy ranking for protocol P.

Case f) 1o =5 A1 € {4,5}: Again v1 # vy. The changeset of ¢’ is a subset of
{v1.8,v1.q,v1.p}. Because of r9, ¢ F va.q and ¢’ F vq.q differ from EXECUTED. In
this case, these variables in the changeset of ¢’ are not referenced by mo. Hence
d Fr(mg) =ckr(msg)and (¢ : ma)|m, = (¢: Mm2)|m,- O

In the following, the operator o is used to denote the concatenation of sequences.

Lemma 19. Let e; be an execution and ry the first round of e; such that e; =
rioe). If es is a suffiz of e; and ro is the first round of es such that e; = rgoel,
then e}, is a suffix of €.

Proof. Ouly the case that e} is a proper suffix of ey is considered. Otherwise,
the claim is obviously true. Let r{ be a prefix of 71 and 7} a suffix of 71 such
that e; = rjoey and r1 = r{ or]. The claim follows if r{ is a prefix of r9, which
is shown in the following.

Let 1 = (co,¢1,...,ck). There exists an instance m € M that is enabled in
all ¢g, c1, ..., cx—1 and that is executed or becomes disabled during the transition
Ck—1 — Ck, but not earlier. If ¢, is the first configuration of ro, then | is clearly
a prefix of ro. Otherwise, some ¢;, i < k is the first configuration of ro and m is
enabled in ¢;. Hence, ro must include ¢; and thus] is a prefix of rs. O

Lemma 20. Let e be an execution of x rounds. Any suffix of e has at most x
rounds.

Proof. Let e be an execution and €’ a suffix of e. Assume that e is partitioned into
rounds 71,79, ...,7; and € into rounds 77,75,..., 7. Let e, =r;or;y10... 01
and ej = rjorj,o...or]. The term e, is defined to be the empty sequence.
By induction on j it is shown that any e} is suffix of e;. In particular, e L1 isa
suffix of ex41 which is the empty sequence. Hence, €], is the empty sequence
and thus [< k. By assumption €} is suffix of e;. Assume that e;- is suffix of e;

for 7 < k. By it follows that 6;'+1 is a suffix of e;41. m|

Proof . Let e be an execution under the distributed scheduler that

is partitioned into rounds ri,rs,...,r;. By [Corollary 8 an execution €’ exists
such that e is subsequence of ¢’. Let x be the number of rounds within ¢’ and
let €’ be partitioned into r{, 75, ..., 7} such that r starts with the configuration

that coincides with the first configuration of r;. Let e denote 7§ o7, o... .07}
and e}, 1 the empty sequence. By induction over j it is shown, that every e} is
an execution of at most x — j + 1 rounds. It follows, that e;_ , is a sequence of
at most x — k rounds and thus k£ < x.

17

ey is obviously an execution of at most z rounds. For j < k, assume that e
is an execution of at most x — j + 1 rounds. For any instance m € M, r; either
contains an execution of m or a configuration in which m is disabled. Since r;

is a subsequence of 7";»7 the same holds for 7"} and the first round of e} is a prefix

of 7. By e, consists of at most x — j rounds. O

18

	A new Technique for proving Self-Stabilization under the Distributed Scheduler

