Performance of Energy-Efficient TDMA Schemes in Data-Gathering Scenarios with Periodic Sources

Christian Renner, Volker Turau, and Christoph Weyer

International Conference on Networked Sensing Systems 18th June, 2010

Institute of Telematics TUHH Hamburg University of Technology

Introduction

Scenario

Data-Gathering Application

- Large-scale sensor network
- Equally equipped nodes
- Periodic data collection
- Single sink
- Multi-hop environment
- Routing tree

Application Cornerstones

Goals

- Reliable transportation
- Energy-efficiency
- Maximal net throughput

Strategies

- Hop-to-hop acknowledgments
- Flow control
- Exploit inherent tree pattern

Medium Access Control: TDMA

- Exclude packet collisions
- Enable high throughput
- Focus on energy-efficient send-receive scheduling
- Allow for reliable data delivery

Traditional Slot Assignment

Color Constraint Heuristic (CCH)

- One slot per node
- Minimize number of slots
- k-hop graph coloring
- Heuristic for quick slot assignment
- Decentralized approach available, but
 - complex slot assignment
 - prone to collisions
 - not optimized for tree routing

Spatial Path-based Reuse

Traffic-Aware Slot Assignment

Spatial Path-Based Reuse (SPR+)

- One slot per node and path
- **Reuse on path after** κ **hops**
- Staggering to avoid buffer congestion
- Ascending order of slots
- Slot assignment via double DFS

$$S_i = \left\{ \begin{array}{l} s \mid 1 \le k \le \kappa, \ 0 \le d < \mathbf{d}_i[k] : \\ s = \mathbf{o}_i[k] + k \ d + (-h_i) \ \text{mod} \ k \end{array} \right\} \qquad \qquad \ \ ^{\triangleright \ \text{Math}}$$

Christian Renner Performance of Energy-Efficient TDMA Schemes in Data-Gathering Scenarios with Periodic Sources

Christian Renner Performance of Energy-Efficient TDMA Schemes in Data-Gathering Scenarios with Periodic Sources

6

▷ Math

Evaluation

Evaluation Setup and Environment

Simulation Setup

- ns-2; two-ray ground
- Collisions via SINR
- Bandwidth 19.2 kbit/s
- 40 packets created per node, constant sampling rate

Environment

- Random topologies with given density
- Precalculated routing trees (BFS)
- Precalculated slot assignments

Details

On-demand forwarding

Nodes send data in their slots and wait to receive in the slots of their children.

Cyclic two-phase collection

Nodes perform forwarding only in periodical forwarding phases and keep the radio off otherwise.

On-demand forwarding

Nodes send data in their slots and wait to receive in the slots of their children.

- Quick data forwarding
 - responsive
 - low end-to-end delay
- Idle listening
 - waste of energy
- Impracticle in some scenarios

Cyclic two-phase collection

Nodes perform forwarding only in periodical forwarding phases and keep the radio off otherwise.

- Efficient radio usage
 - switch off radio, if no data left
- Large Latency
 - only applicable in delay-tolerant scenario
 - reduced sampling rate

On-demand forwarding

Nodes send data in their slots and wait to receive in the slots of their children.

- Quick data forwarding
 - responsive
 - low end-to-end delay
- Idle listening
 - waste of energy
- Impracticle in some scenarios

Cyclic two-phase collection

Nodes perform forwarding only in periodical forwarding phases and keep the radio off otherwise.

- Efficient radio usage
 - switch off radio, if no data left
 - Exarge Latency
 - only applicable in delay-tolerant scenario
 - reduced sampling rate

On-demand forwarding

Nodes send data in their slots and wait to receive in the slots of their children.

- Quick data forwarding
 - responsive
 - low end-to-end delay
- Idle listening
 - waste of energy
- Impracticle in some scenarios

Cyclic two-phase collection

Nodes perform forwarding only in periodical forwarding phases and keep the radio off otherwise.

- Efficient radio usage
 - switch off radio, if no data left
 - Earge Latency
 - only applicable in delay-tolerant scenario
 - reduced sampling rate

On-demand forwarding

Nodes send data in their slots and wait to receive in the slots of their children.

- Quick data forwarding
 - responsive
 - low end-to-end delay
- Idle listening
 - waste of energy
- Impracticle in some scenarios

Cyclic two-phase collection

Nodes perform forwarding only in periodical forwarding phases and keep the radio off otherwise.

- Efficient radio usage
 - switch off radio, if no data left
- Large Latency
 - only applicable in delay-tolerant scenario
 - reduced sampling rate

On-demand forwarding

Nodes send data in their slots and wait to receive in the slots of their children.

- Quick data forwarding
 - responsive
 - low end-to-end delay
- Idle listening
 - waste of energy
- Impracticle in some scenarios

Cyclic two-phase collection

Nodes perform forwarding only in periodical forwarding phases and keep the radio off otherwise.

- Efficient radio usage
 - switch off radio, if no data left
- Large Latency
 - only applicable in delay-tolerant scenario
 - reduced sampling rate

8

What is the achievable throughput?

Slot Utilization / Theoretical Throughput

Relative On-Demand Throughput

Two-Phase Forwarding Share

SPR⁺ Energy Consumption

Conclusion

Conclusion

- SPR⁺ combines the advantages of
 - slot reuse and
 - traffic-aware slot assignment
- SPR⁺ achieves
 - the highest net throughput among the competitors
 - while avoiding buffer congestion
 - and being highly energy efficient
- Two-Phase data collection
 - reduces energy consumption for low sampling rates
 - but introduces heavy packet delay

Performance of Energy-Efficient TDMA Schemes in Data-Gathering Scenarios with Periodic Sources

Christian Renner, Volker Turau, and Christoph Weyer

International Conference on Networked Sensing Systems 18th June, 2010

Institute of Telematics TUHH Hamburg University of Technology

SPR⁺ Calculation

▷ Back

14

$$S_i = \left\{ \begin{array}{l} \boldsymbol{s} \mid 1 \leq k \leq \kappa, \ 0 \leq \boldsymbol{d} < \boldsymbol{d}_i[k] :\\ \boldsymbol{s} = \boldsymbol{o}_i[k] + k \ \boldsymbol{d} + (-h_i) \ \text{mod} \ k \end{array} \right\}$$

Slots of v_4 : $\mathbf{o}_4 = (*, 5, 7, 13), \ \mathbf{d}_4 = (0, 1, 2, 2), \ h_4 = 2, \ \kappa = 4$

k	o ₄ [k]	+	k∙d	+	$(-h_4) \mod k$	=	$m{s}\in\mathcal{S}_i$
1	*					=	Ø
2	5	+	$2\cdot \{0\}$	+	(-2) mod 2	=	{5}
3	7	+	$3\cdot \{0,1\}$	+	(-2) mod 3	=	$\{8, 11\}$
4	13	+	$4\cdot\{0,1\}$	+	(-2) mod 4	=	$\{15, 19\}$

Setup Details

▷ Back

- 20-900 nodes
- Node densities: 6, 9, 12, 18, 24
- 50 topologies each
- Buffer size: 200 packets
- 240 bits data payload, slot length 50 ms (4.6 kbit/s net bandwidth)

SPR⁺ Average Packet Delay

