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Abstract

This paper presents a new transformation which adds fault-containment
properties to any silent self-stabilizing protocol. The transformation features
a constant slow-down factor and the fault-gap — that is the minimal time
between two containable faults — is constant. The transformation scales well
to arbitrarily large systems and avoids global synchronization.
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1. Introduction

The notion of self-stabilizing was coined by E. W. Dijkstra
[6]. A self-stabilizing distributed system provably converges
to a set of legitimate states in finite time, regardless of its
initial state and without any external intervention. The work
of Dijkstra was then picked up by L. Lamport who called it a
“milestone in work on fault-tolerance” [16]. The system state
after a transient fault can simply be seen as another initial state.
The self-stabilizing system is guaranteed to converge again.
This makes self-stabilization an elegant and formal approach
for non-masking tolerance of transient faults.

However, it is a well known problem that even a small scale
fault can cause disruption of large parts of the system and
that it may take a rather long time, until the system reaches a
legitimate state again. This is mostly due to the fact that each
node of the system can only access local data. This makes
it hard for a node to identify faulty incoming data and thus
faulty data can spread from node to node. This process is
called contamination.

As an example, consider a protocol that establishes a
shortest path spanning tree. It maintains two variables on each
node. One to store the distance to the designated root node
and another variable with a pointer to a neighboring node.
Each node computes its own distance variable by looking at
the distance variables of its neighbors. The pointer variable
simply points to the neighbor with the lowest distance. After
stabilization, the pointers form a spanning tree.

As it happens, a node with a high distance to the root
node is affected by a fault. Its distance variable has been
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set to a very low value by the corruption. To other nodes,
this will appear like a shortcut to the root node has been
discovered. Depending on the choices of the scheduler, the
false information may spread throughout most of the system
before the faulty node repairs its variable. Hence, at some
point during the stabilization process, many of the pointer
variables will point in direction of the faulty node, rather than
the direction of the real root.

If the spanning tree induced by the pointer variables is
used for routing, then such a disruption can cause loss of a
large number of packets. It is very desirable that the effects
of such faults are restrained in space and time. Depending
on the application, one might be particularly interested in a
quick recovery of only the pointer variables whereas the other
variables can be allowed to fluctuate until a legitimate state is
reached again.

Fault-containment promises to lower the impact of small
scale faults. It has been put in the context of self-stabilization
for the first time by Ghosh et al. [8]. Fault-containing self-
stabilizing protocols combine two aspects: First, such proto-
cols recover quickly from small scale faults. Secondly, they
also recover from large scale faults because they are self-
stabilizing. A further motivation is the fact that small scale
faults are usually much more frequent than large scale faults.
Handling them efficiently can greatly increase the availability
of the system.

Ghosh et al. also defined metrics to measure the fault-
containment qualities of self-stabilizing protocols. The most
significant two are containment time and contamination num-
ber. The former describes the impact of a fault in time, namely
how long it takes after a fault, until the output of a protocol
can be considered to be correct again. The latter describes the
impact of a fault in space, namely how many nodes change
their output variables and thus can be expected to stop working
temporarily. Furthermore, there is the fault-gap. It indicates,
how frequent small scale faults can occur. A fault-containing
protocol is only guaranteed to handle two subsequent faults
efficiently, if the interval between them is no smaller than the
fault-gap. It is usually greater than the containment time. After
the output variables have been restored, the protocol may have
to prepare for the containment of another fault.

The main contribution of this paper is a transformation
that maps any silent self-stabilizing protocol P to a fault-
containing self-stabilizing protocol Pr. The containment time,
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contamination number, and also the fault-gap of protocol Pr
are constant. The fault-gap is significantly lower than that of
all known general transformations for asynchronous systems.
In addition, the transformation is shown to preserve the
stabilization time of protocol P, except for a constant slow-
down factor.

2. Model of Computation

A distributed system is represented as an undirected graph
(V, E) where V is is the set of nodes and E C V XV is the set
of edges. The topology is assumed to be fixed. If two nodes
are connected by an edge, then they are called neighbors. The
set of neighbors of node v is denoted by N(v) C V. The
number of nodes in the system is denoted by n = |V| and A
denotes the maximal degree of the nodes.

Each node stores a set of variables. The values of all
variables constitute the local state of a node. Let o denote the
set of local states of a node. The global state of the system is
the vector of all local states in the system and > = ¢™ denotes
the set of global states.

Nodes communicate via locally shared memory. Every node
can read the variables of all its neighbors. Write access is
prohibited. Each node v € V executes a protocol consisting
of a list of rules. Each rule consists of a guard and a statement.
A guard is a Boolean expression over the variables of node v
and its neighbors. A rule is called enabled if its guard evaluates
to true. A node is called enabled if one of the rules is enabled.

The execution of the statements is controlled by a scheduler.
It operates in steps. At the beginning of step ¢, it first non-
deterministically selects a non-empty subset S; C V of
enabled nodes. Each node in .S; then executes the statement
of the enabled rule. This is called a move. A step is fin-
ished, if all nodes have finished their moves. The sequence
(S1, 52,53, ...),S; C Vis called schedule. This paper focuses
on the central daemon scheduler which selects exactly one
node during each step (|S;| = 1). No assumptions on the
fairness of the scheduler are made.

An execution {(cg, c1,ca,...), ¢; € ¥ is a sequence of global
states c¢; where ¢ is the initial state and c; is the global state
of the system after the i-th step. In other words, if the system
is in the state ¢; and all nodes in S;;1 execute a move, then
this yields ¢;41.

The run-time of a protocol is measured in rounds. Let x be
an execution and xo = x. Then z is partitioned into rounds
by induction over ¢ = 0,1, 2,...: round 7; is defined to be the
minimal prefix of x;, such that each node v € V has either
executed a move or is disabled at least once within r;. The
execution ;4 is obtained by removing the prefix r; from x;.
The intuition is that within a round, each node that is enabled
at the beginning of the round, gets the chance to execute a
move if it has not become disabled by a move of its neighbors.

2.1. Self-Stabilization

Let P be a protocol and let Legitp denote a Boolean
predicate over the set of global states X. If Legitp(c) is true,
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then the global state c is called legitimate. Protocol P is said to
be self-stabilizing with respect to Legitp, if both the following
properties are satisfied. Convergence: for any execution of
protocol P, a legitimate state is reached within a finite number
of steps. Closure: for any execution of protocol P it holds that
once a legitimate state is reached, all subsequent states are also
legitimate. Furthermore, a self-stabilizing protocol P is called
silent, if it terminates after a finite number of steps. A protocol
has terminated, if all nodes are disabled.

2.2. Fault-Containment

A global state that can be derived from a legitimate state by
perturbing the variables of a single node is called 1-faulty. To
efficiently recover from such global states, the transformation
of protocol P into protocol Pr adds a set of new variables
to each node. These variables are called secondary. The
variables of the original protocol P are called primary. By
this distinction of primary and secondary variables, any global
state is split up into an ordered pair of a primary state and a
secondary state.

Let Legitp denote the predicate that decides whether the
primary state is legitimate with respect to protocol P and let
protocol Pr be self-stabilizing with respect to the predicate
Legitp,.. Protocol Pr is required to satisfy the following:

1) For any legitimate state of protocol Pp, the primary state
is also legitimate. Vc : Legitp,_(c) = Legitp(c)

2) For any execution of protocol Pr that starts in a 1-
faulty state the following property holds: After the first
legitimate primary state all subsequent primary states are
also legitimate. *

Starting in a 1-faulty state, the containment time denotes the
number of rounds needed to reach a legitimate primary state
(Legit p holds). The contamination number denotes the number
of nodes that change their primary variables during that time.
The fault-gap denotes the number of rounds that the system
needs to reach a fully legitimate state (Legitp,, holds).

Protocol Pp is called fault-containing with respect to
Legitp, if both worst-case containment time and worst-case
contamination number are constant.

2.3. Nonstandard Extensions

Without loss of generality, it is assumed that per node only
one rule of a protocol can be enabled at a time. Then it is
possible to define a guard Gx and statement Sx, such that
protocol X can be written as a single rule. The guard G'x is
the disjunction of all guards of protocol X. The statement Sx
simply tests all guards again, and executes the statement of
the enabled rule.

Furthermore, a notation for the evaluation of a guard for
a given node v, topology, and specific local states is needed.

*. This differs from the definition in [8]. There, this is required to hold for
any execution of protocol Pr, regardless of the initial state. However, we do
not know of any transformation which satisfies this requirement.



In agreement with the above, the predicate G'x (v) is defined
to be true if and only if protocol X is enabled on node v in
the current topology and configuration. The predicate G x (v :
x,u : y) is defined to be true if and only if protocol X is
enabled on node v in a virtual topology and configuration. In
the virtual topology, v and u are the only nodes and u is the
only neighbor of v. In the virtual configuration, the local states
of nodes v and u equal = and y respectively (also see the end
of Section 4.2.2).

To run multiple protocols on one node, a naive composition
is used. It is called combining composition and is denoted by
Ao B. The protocol A o B consists of a single rule only. The
guard is defined as G4 V Gp and the statement consists of the
two commands if G 4 then S4 and if Gp then Sp. Note that
the guard G p is to be re-evaluated after the execution of S4.
The statement S4 may change variables that affect Gp.

3. Related Work

Ghosh et al. [8], [9] present the first transformer that
maps any silent self-stabilizing protocol P to a silent fault-
containing self-stabilizing protocol Pr. They describe two
methods for fault repair. The first method increases the space
required on each node by a factor of about A+ 1. The second
method increases the requirements by a factor in the order
of A%, but only during the repair phase. Independent of the
chosen repair method and with all given optimizations applied,
the fault-gap is still (n). Mainly because a fault has an impact
on the secondary variables of the whole system. In addition,
an upper bound of the system size must be known a priori.
Making the transformer adjust to the size of the system at
run-time seems to be a non-trivial task.

In [8], Ghosh et al. contribute an important impossibility
result. It is shown that it is impossible for a transformer to
map any self-stabilizing protocol P with stabilization time T’
to a fault-containing self-stabilizing protocol P that stabilizes
within time 7 + O(1) and has a fault-gap of O(1). The main
contribution of our paper is a transformer with fault-gap O(1)
and stabilization time O(T).

Another way of creating fault-containing protocols is ex-
plored by Ghosh and He [12]. They introduce the model of
priority scheduling and construct a spanning tree protocol to
illustrate that the new model helps designing fault-containing
protocols. The protocol has a constant fault-gap which is
shown to be preserved under a transformation that adapts
priority scheduling to the central daemon scheduler. But it
remains an open question, whether priority scheduling can be
used to add fault-containment to arbitrary protocols.

Dasgupta et al. investigate a probabilistic variant of fault-
containment. They apply the technique to the persistent-bit
problem [4] and leader election [5]. The technique seems to
be suitable for weakly-stabilizing systems [5] only. Again, it
is an open question, whether the technique can be extended to
a general transformation.

Herman and Pemmaraju [13] try to avoid any replica-
tion overhead. They use error-detecting codes to add fault-
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Figure 1. States of a node and the transition-actions

containment to self-stabilizing protocols. Faults are recognized
and contained with high probability. The transformation ap-
plies to certain classes of protocols only. If a fault is contained,
then this happens within a single step.

Furthermore, many problem specific fault-containing self-
stabilizing protocols have been designed: Maximal Indepen-
dent Set [17], Spanning Tree [10], [11], [14], and Leader
Election [7]. Problem specific protocols usually require less
space and/or stabilize faster than solutions based on a general
transformation. Yamauchi et al. [18], [19] show that more
complex fault-containing self-stabilizing protocols can be ob-
tained by hierarchical composition of existing fault-containing
protocols, without loosing their fault-containment properties.

Concepts similar to fault-containing self-stabilization are
time-adaptiveness and k-strongness. Time-adaptive self-
stabilization is introduced by Kutten and Patt-Shamir [15].
The recovery time of such protocols is linear in the num-
ber of faults. Burman et al. [3] published the first time-
adaptive and fully self-stabilizing protocol for the majority
consensus problem, a variation of the persistent bit problem.
k-strong self-stabilization is introduced by Beauquier et al.
[2]. Apart from other properties, a k-strong self-stabilizing
protocol stabilizes from a k-faulty state within O(k) time
which is similar to time-adaptiveness. A transformation for
asynchronous protocols is given. The transformation is rather
complex and the space requirements increase by a factor in
the order of 3A. In addition, the resulting 1-strong protocol
does not work in asynchronous systems.

4. The Transformation

In the following, a transformer is described that adds fault-
containment to any given silent protocol P that is self-
stabilizing under the central daemon scheduler. The obtained
protocol will be called Pr and is self-stabilizing with respect
to a new predicate Legifp,, again under the central daemon
scheduler. But protocol Pr also recovers from single transient
faults in constant time.

The basic idea is captured in Figure 1. Every node executes
cycles of the state machine shown there. Figure 1 also names
certain actions that are to be performed along the different
transitions from one state to another. Starting in state PAUSED,
a node first tries to repair its primary state if necessary. It then
executes a single move of protocol P. Then the node will ask
all of its neighbors to copy its primary state - that is the so-
called book-keeping. These copies serve as a backup. In the



case that the primary state of the node has been corrupted, they
are used to restore the original value of the node’s primary
state. To execute several moves of protocol P, a node has to
execute several cycles of the state machine.

Additional work is needed to use the state machine for
fault-containment. The main objectives are summarized by
the following three challenges. Challenge 1: After a fault, the
state machine of each node should be guaranteed to start in
the state PAUSED. Otherwise, a fault can essentially bypass
the repair mechanism, for example by putting a node into the
state EXECUTED. Then the book-keeping is performed before
any repair takes place. This would destroy the information
necessary to restore the nodes primary state. Challenge 2:
After a fault, all neighbors of the faulty node must be kept
from executing protocol P, at least until the primary state
of the faulty node has been repaired. Otherwise, the fault
would spread to the neighbors and beyond. This contamination
process is hard to reverse. Challenge 3: To repair their primary
state, nodes with only a single neighbor depend on information
provided by their only neighbor. The variable in which the
information is provided, might be corrupted by the fault. After
a fault, it must be guaranteed that the value of that variable is
re-computed.

These challenges have been addressed by establishing a
constant dialog between a node and its neighbors. To perform
a transition, each node has to execute the following steps:

1. Ask neighbors for approval of transition

2. Wait for acknowledgement of all neighbors

3. Perform transition
All neighbors execute the counterpart:

1. Wait for query

2. Respond with acknowledgement
This dialog turns out to be sufficient, to solve all of the
three challenges given above. How this is achieved in detail
is described in the next section.

4.1. Implementation

The implementation is based on the novel notion of cells. A
cell v spans node v as well as all its neighbors. Node v is called
center node and its neighbors are called responding nodes.
Within cell v, the center node executes protocol () whereas
each responding node executes protocol IR,,. Note that there is
only one generic protocol R,, which is instantiated for different
values of v.

A very important principle in the following approach is that
every node of the system is a center node of a cell. Hence,
cells overlap and two cells are called neighboring cells, if their
center nodes are neighbors. In conclusion, every node of the
system is not only a center node, but also a responding node of
up to A neighboring cells. This leads to the fact that each node
does not only have to execute protocol (), but also one instance
of protocol R, for each cell that it is a responding node of.
All these protocols are merged to the combining composition
denoted by @ o (o,¢ N(U)Ru). This composition constitutes
protocol Pp, the result of the transformation.

421

Within cell v, protocols @ and R, implement the state
machine as shown in Figure 1 based on a dialog as previously
explained. The implementation of the transition-actions has
been split out into the two procedures actiong and actiong, .

The center node, which is executing protocol @, has the
main control within cell v. It decides, whether a transition is
to be performed and to which state the transition leads. To
perform a transition, the center node first asks all responding
nodes for approval. They respond with acknowledgements,
and only if all responding nodes have acknowledged, then the
transition can be completed by the center node.

Let v denote a center node. Protocol () uses the variable
v.8 € Zy4 to store the numerical value of the current state
according to Figure 1. The variable v.q € Z, also stores a
numerical state value. If v.q differs from v.s, then the pair
(v.s,v.q) is a query for a transition from state v.s to state
v.q. If v.q equals v.s, then the pair is called a pause. Note
that not all possible queries and pauses are valid. Any query
for a transitions not shown in Figure 1 and any pause in a
state other than PAUSED is considered invalid. Such invalid
values indicate an erroneous state and basically lead to a reset
of the cell (explained below). To approve a transition, each
responding node u € N(v) of cell v has a variable u.r,. It
is simply set to v.q to acknowledge a query by node v. All
the r,, variables of a cell are also referred to as the response
variables. The variables v.s and v.q as well as all the response
variables are called dialog-variables.

At the beginning of a cycle of the state machine, all dialog-
variables of a cell equal PAUSED. The cell is then called
dialog-paused. The center node v can start a new cycle of the
state machine by setting the variable v.q to REPAIRED. While
the center node waits, all responding nodes acknowledge the
query by setting their response variable to v.q. If that has
happened, the cell is called dialog-acknowledged. The center
node can then complete the transition by setting v.s to v.q. If
a pause is not valid in the current state, then the center node
asks for a new transition straight away by incrementing v.q.
The last steps are repeated, until a cycle of the state machine
is completed and the cell is dialog-paused again. During the
whole process, a cell always stays within a state, that is
formalized by notion of a dialog-consistent cell: The variables
v.s and v.q form a valid pause or query and the response
variables equal either v.s or v.q. The following predicates
reflect the above:

validQuery(v) = v.q = (v.s + 1) mod 4
dialogConsistent(v) = (v.q = v.s = PAUSED V
validQuery(v)) A
Yu € N(v) : u.ry € {v.5,0.q}
dialogAcknowledged(v) = validQuery(v) A
Vu € N(v) : ur, =v.g
dialogPaused(v) = v.q = v.s = PAUSED A
Yu € N(v) : u.r, = PAUSED

Note that dialogAcknowledged(v) and dialogPaused(v) are



Protocol Pr

Protocol R,

Data: v is the current node

Gg(v) or Ju e N(v) : Gg, (v) — [RULE 1]
if G (v) then

| execute Sg
foreach u € N(v) do

L if Gg, (v) then

| execute Sg,
Protocol @

Data: v is the current node

(v.s # PAUSED or v.q # PAUSED)
and not dialogConsistent(v) —
v.5 := PAUSED
L v.q := PAUSED
dialogPaused(v)
and startCondg(v) —
| v.q := REPAIRED

[RULE 1]

[RULE 2]

dialogAcknowledged(v) —
actiong (v)
V.8 1= v.q
if v.s # PAUSED then
| v.gq:=(v.s+1)mod4

[RULE 3]

mutually exclusive and both imply dialog-consistency.

Of course, in the initial state or in case of a fault, cells
are in general not dialog-consistent. To restore their dialog-
consistency, the cells perform a reset in two steps: First, the
center node executes Rule 1 of protocol @). The responding
nodes follow, and execute Rule 1 of protocol R,. After the
reset, all dialog-variables equal PAUSED. The cell is now
dialog-paused and thus dialog-consistent.

For the different transition-actions shown in Figure 1, proto-
col () maintains an additional variable v.p € op. The variable
v.p is the only primary variable of cell v. Hence, it is also
referred to as the primary state of the cell. Furthermore, each
responding node u € N (v) of cell v has a variable u.d, € Z3
and a variable u.c,, € op. The set op denotes the set of local
states with respect to protocol P. All the variables d, within
cell v are called decision-variables and the variables ¢, are
called copy-variables.

During the executing of a cycle of the state machine,
the cell first performs the transition PAUSED — REPAIRED.
Along with the acknowledgements, every responding node
sets its decision-variable. Then the center node completes the
transition by repairing its primary state. How exactly the repair
mechanism works and how the decision-variables are used, is
described in detail in Section 4.2. During the next transition
to state EXECUTED, the center node will execute a single

422

Data: u is the current node
Data: v is the center node

v.8 = v.q = PAUSED

and u.r, # PAUSED — [RULE 1]
| w.r, := PAUSED

validQuery(v) and u.r, = v.s

and not waitCondp, (u) — [RULE 2]

actiong, (u)
UTy 1= V.q

L

move of protocol P, simply by invoking Sp if Gp is true.
Without loss of generality, Gp and Sp are assumed to directly
access the variable v.p on each node v. The transition to the
state COPIED completes the cycle. During this transition, the
responding nodes perform the book-keeping by updating their
copy-variables along with acknowledging the query by the
center node.

After completing a cycle of the state machine, all copy-
variables equal the primary state of the cell. In this state,
the cell is called copy-consistent. But during stabilization, the
copy-consistency of a cell is destroyed regularly. For example
by executing a move of protocol P. It changes the primary
state of the cell, but not the copy-variables. For this and
other reasons, copy-consistency cannot serve as an indicator,
whether a fault is already repaired or not. A new predicate
repaired(v) is defined:

copyConsistent(v) =Vu € N(v) : u.c, = v.p
repaired(v) = copyConsistent(v) V
(dialogConsistent(v) A
(v.s = REPAIRED V v.s = EXECUTED) A
Vu € N(v) : (u.r, = COPIED = u.c, = v.p))

A cell is called repaired, if it is copy-consistent or if it is
dialog-consistent and in the state REPAIRED or EXECUTED.
In addition, every responding node that has acknowledged the
transition to COPIED, must have updated its copy-variable.

To keep a cell from completing a transition, a responding
node can delay its acknowledgement. In the implementation,
this controlled by the Boolean predicate waitCondp,. A re-
sponding node does not acknowledge the query of the center
node, as long as the predicate is true. If such a responding
node exists within a dialog-consistent cell, then the cell is
called blocked.

In the current implementation, this mechanism is only used
to keep a cell from finishing the transition REPAIRED —
EXECUTED. Blocking a cell during this particular transition
prevents the center node from executing a move of protocol P.
To serve this special purpose, the wait-condition is defined as
follows:

waitCondp, (u) = v.g = EXECUTED A —wepaired(u)



Procedure actiong(v)

Procedure actiong, (u)

Data: v is the current node

1 if v.¢ = REPAIRED

and not copyConsistent(v) then
2 u := any neighbor of node v
3 if [N(v)| > 1 and Vw € N(v) : w.c,, = u.c, then
4 | vpi=uc,
5 if |[N(v)| =1 and u.d, = UPDATE then
6 | vpi=uc,
7 if [N(v)] =1 and u.d,, = SINGLE and v.c,, = u.p
and ( Gp(v:v.p,u:up)or Gp(u: u.p,v:v.p))
then
8 | vpi=uc,
9 if |[N(v)| =1 and u.d, = SINGLE and v.c,, # u.p
and not ( Gp(v : u.cy,u : u.p) or
Gp(u:u.p,v:u.c,) ) then

10 | vpi=uc,

if v.¢ = EXECUTED and Gp(v) then
L execute Sp

—
(5]

Later on, the predicate repaired(v) is shown to be an
invariant. That is, once a cell is repaired, it remains repaired
under the execution of the state machine. During stabilization,
blocked cells only exist in an initial phase. Once all cells are
repaired, all cells are completely independent. No cell can
become blocked.

During stabilization of protocol Pr, cells will frequently
become dialog-paused. A cell only starts a new cycle of the
state machine in certain situations. Certainly, cell v should
start a new cycle, if it is not repaired. By executing a cycle
of the state machine, the cell becomes repaired again. Second,
cell v should start a new cycle, if protocol P is enabled for the
center node, so that node v is given the chance to execute a
move of protocol P. The start-condition is defined as follows:

startCondg (v) = —copyConsistent(v) V Gp(v)

Note that the start-condition is only evaluated, if the cell
is dialog-paused. In this case a test for repaired(v) can be
replaced by a test for copyConsistent(v). The two predicates
are equivalent for dialog-paused cells.

An important aspect of the implementation is the avoidance
of deadlocks. It seems likely that cells can form a circle,
in which each cell is blocked by its predecessor within the
circle. From the definition of waitCondpg, it follows that a
cell can only be blocked if it is in the state REPAIRED. But
by definition, such a cell is repaired. In other words: a blocked
cell cannot block any other cell. Hence this kind of deadlock
is impossible.
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Data: u is the current node
Data: v is the center node

if v.¢ = REPAIRED then
if [N(u)| =1 then
u.d, := SINGLE
else if [N (u)| > 1
and (Yw e N(u) :w=v V w.c, =u.p)
and ( Gp(u) or Gp(v : v.p,u : u.p) ) then
5 | w.d, := UPDATE
6 else
7 | w.d, := KEEP

B W N =

8 if v.g = COPIED then
9 L U.Cy 1= V.P

4.2. Fault-Repair

In Section 5.1, protocol Pr is shown to converge to the set
of legitimate states induced by Legitp, . In such a legitimate
state, all cells are legitimate. A cell is called legitimate, if it is
dialog-paused, copy-consistent, and if protocol P is disabled
for the center node.

Legitp, =Vv € V : (=Gp(v) A
dialogPaused(v) A copyConsistent(v))

A 1-faulty state differs from a legitimate state in the
variables of single node only. Something very similar holds for
an individual cell. In a 1-faulty state, a cell is either legitimate,
or it differs from a legitimate cell in the variables of a single
node only. Notice that there can only be up to A + 1 non-
legitimate cells in a 1-faulty state.

Let the global state be 1-faulty and let v denote a cell that
is not legitimate. If the fault has corrupted dialog-variables,
then cell v differs from a dialog-paused cell in the dialog-
variables of a single node. If cell v is not dialog-consistent,
then it will be dialog-paused again after at most one move of
either protocol @ or R,. Note that this move does not change
any of the copy-variables or the primary state of the cell. It
may also happen that the cell is still dialog-consistent even
though dialog-variables have been corrupted. This can only
be the case, if only one of the two variables v.s or v.q was
corrupted by the fault. Either v.s was set to COPIED or v.q
was set to REPAIRED.

In any case it holds that the first transition-actions executed
by a cell are that of the transition PAUSED — REPAIRED. First,
all responding nodes of cell execute actionr, and set their
decision-variables. Then the center node executes actiong and
completes the repair. The repair mechanism is inspired by the
synchronous protocol C' described in [9]. The details of the
repair mechanism are explained from the point of view of cell
v. The explanation is split up into three special cases.



4.2.1. Multiple copy-variables. If there are multiple respond-
ing nodes in cell v, then it is easy to decide, whether the
primary state has been corrupted. Prior to the fault, cell v
must have been copy-consistent. If the global state is 1-faulty
and if cell v is not copy-consistent, then cell v must match
one of the following cases:

Case a) The variable v.p differs from the copy-variables.
All copy-variables have an identical value.

Case b) There is one copy-variable that differs from v.p.
All other copy-variables have the same value as v.p.

The first case can be identified simply by checking, whether
all copy-variables have the same value. If this is the case, then
v.p must be the variable which has been corrupted. Otherwise,
it can be assumed that a copy-variable has been corrupted
by the fault. Exactly this check is implemented in line 3 of
procedure actiong. If case a) is detected, then the value of v.p
is overridden with the value of one of the copy-variables. Note
that a cell with only one responding node trivially matches
both cases.

4.2.2. Only a single copy-variable. Let cell v be a cell with
only one responding node and let v denote the cell neighboring
to cell v. It is assumed that cell © has multiple responding
nodes. Otherwise, the system consists of two nodes only. This
case is discussed in Section 4.2.3.

If cell v is not copy-consistent, then either v.p or u.c,
has been corrupted by the fault. Since u.c, is the only copy-
variable, it is not possible for node v to find out by itself which
of the two variables it is. To solve the problem, node v lets
node u decide. Node w can evaluate the guard of protocol P
for node v, since u is the only neighbor of v. If protocol P
is enabled for one of the two nodes, then either u.p or v.p
must have been corrupted by the fault. Additional checks are
performed by node v to make sure that it is v.p and not u.p
which has been corrupted.

Case a) Assume that only v.p and possibly v.c, have been
corrupted by the fault. Then cell © must be copy-consistent,
with the exception of v.c,. Then the condition in line 4 of
actiong, (u) is true depending on whether one of the two
nodes is enabled. The decision-variable u.d,, is set to UPDATE
accordingly.

Case b) Assume that only u.c,, and possibly u.p have been
corrupted by the fault. If u.p has been corrupted, u.p differs
from all copy-variables in cell u. Hence, the condition in line 4
of actionp,(u) is false. If u.p has not been corrupted, then
cell u is copy-consistent, but protocol P is disabled for both
the two nodes v and w. Again, the condition in line 4 of
actiong, (u) is false. Node w set its decision-variable to KEEP
and cell v does not change its primary state.

Cell u can also finish the transition PAUSED — REPAIRED
prior to cell v. If w.p has been corrupted, then its original
value is restored, and protocol P is disabled on both nodes.
In this case, the decision-variable u.d, is again set to KEEP
and cell v does not change its primary state.

To avoid an additional handshake between nodes v and u,
node v always assumes that it is the only neighbor of node v.
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In line 4 of procedure actionp, (u), node u evaluates the guard
of node v in a virtual topology where w is the only neighbor
of v. The result of this evaluation only affects the decision-
variable u.d,. Node v then decides, whether the assumption
made by node u is correct: The procedure actiong(v) only
uses the value of u.d,, if it holds |N(v)| = 1.

4.2.3. The single-edge case. Let the system consist of nodes
v and u only. When performing the transition PAUSED —
REPAIRED, both nodes set their decision-variables to SINGLE.
In this case, only lines 7 and 9 of procedure actiong apply.
Note that it is possible for both nodes to evaluate guards for
each other.

Let cell v be copy-consistent and let cell v be not copy-
consistent. Then either v.p or u.c, has been corrupted by the
fault. By line 7 of procedure actiong, cell v only updates its
primary state, if one of the two nodes is currently enabled. In
this case, it must have been v.p that has been corrupted by
the fault and setting v.p to u.c, disables protocol P for both
nodes.

Now, assume that both cells are not copy-consistent. In
this case, either overriding v.p with u.c, or overriding u.p
with v.c, must disable protocol P for both nodes. Which
primary state is to be overridden is tested in line 9 of
procedure actiong. Without loss of generality, it is assumed
that the check succeeds for node v and that node v has either
not executed procedure actiong yet or that check has failed
for node u. Node v then performs the assignment v.p := u.c,.
Cell v is now copy-consistent and protocol P is disabled on
both nodes. If node u executes procedure actiong after node
v, then cell v is already copy-consistent. But the condition in
line 7 of procedure actiong is false because protocol P is
disabled for both nodes and hence node u does not change its
primary state.

5. Analysis

First, it is shown that protocol Pp is self-stabilizing with
respect to Legifp, . Second, it is shown that protocol Pp is
fault-containing with respect to Legit ». In addition, an analysis
of the fault-gap and the stabilization time is given.

The proofs are based on observations about the behaviour
of individual cells. The behaviour of a cell is determined
by protocols () and R,. But since protocol Pr is only a
composition of these protocols, all the observations also apply
to protocol Pr itself. Note, if a node is enabled with respect
to protocol @) or any of the instances of protocol R,, then it
is also enabled with respect to protocol Pr. And if a node
executes a move of protocol Pr, then it always executes a
move of protocol () or one of the instances of protocol R,.
Actually, counting the moves of protocols ) and R, instead
of the moves with respect to protocol Pr can only lead to an
overestimation.

In the following, a cell is called enabled, if the center node is
enabled with respect to protocol @) or if one of the responding
nodes is enabled with respect to protocol R,. It is said that



cell v makes a move, if the center node v makes a move with
respect to protocol @) or if one of the responding nodes makes
a move with respect to protocol R,.

5.1. Proof of Self-Stabilization

Lemma 1. If a cell is not dialog-consistent, then it is enabled
and becomes dialog-consistent within the next 2 rounds and
in at most 2\ moves.

Proof: Let v denote a cell that is not dialog-consistent.
First round: If (v.s,v.q) is a valid query, then the response
variable of at least one responding node is not set correctly.
The other up to A — 1 responding nodes may execute Rule 2
of protocol R,. If v.s and v.q don’t equal PAUSED yet, then
the center node now performs a reset by executing Rule 1 of
protocol Q. Second round: Up to A responding nodes execute
Rule 1 of protocol R,. Cell v is now dialog-paused and hence
dialog-consistent. U

Lemma 2. A dialog-consistent cell v remains dialog-
consistent under the execution of Q and R,,.

Proof: Let v denote a dialog-consistent cell. Rule 1 of
protocol () as well as Rule 1 of protocol R, cannot be enabled.
All other rules set the dialog-variables in a way that complies
with the definition of dialog-consistency. O

Lemma 3. If a cell is not repaired, then it is enabled and
becomes repaired within the next 7 rounds and in at most
3A + 3 moves.

Proof: Let v denote a cell that is not repaired. If cell
v is initially not dialog-consistent, then it becomes dialog-
paused by Lemma 1. Then, if not yet copy-consistent, cell
v executes the transition PAUSED — REPAIRED. If cell v is
initially dialog-consistent, then the worst case is that cell v has
to complete the transition EXECUTED — COPIED and execute
the transitions COPIED — PAUSED — REPAIRED to become
repaired.

Completing the transition EXECUTED — COPIED takes at
most 2 rounds and A moves and the transition COPIED —
PAUSED takes at most 2 rounds and A + 1 moves. The
transition PAUSED — REPAIRED takes 3 rounds and A + 2
moves because of one extra move for executing Rule 2 of
protocol Q). Note that startCondg (v) is true if cell v is dialog-
paused but not repaired. O

Lemma 4. A repaired cell v remains repaired under the
execution of Q) and R,,.

Proof: Let v denote a repaired cell. Rule 2 of proto-
col R, sets the copy-variables to the the value of v.p. This
cannot reduce the copy-consistency of cell v. It rather restores
copy-consistency of cell v. Rule 3 of protocol ) can destroy
copy-consistency by changing the primary state of the cell.
But this can only happen, if cell v is dialog-consistent and
is completing a transition to REPAIRED or EXECUTED. After
that move, cell v is still dialog-consistent by Lemma 2.  [J
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Theorem 5. If Legitp _ is false, then there is at least one node
enabled with respect to protocol Pr.

Proof: Let v denote a cell that is not legitimate. Cell v is
either not copy-consistent, not dialog-paused, or protocol P is
enabled for node v. If cell v is not dialog-paused and blocked,
then there is a neighboring cell that is not repaired and hence
enabled by Lemma 3. If cell v is not dialog-paused and not
blocked, then it is either enabled by Lemma 1 or in the middle
of completing a cycle of the state machine and thus enabled.
If cell v is dialog-paused, then it is either not copy-consistent
or protocol P is enabled for node v. Then startCondg(v) is
true and hence Rule 2 of protocol () is enabled. O

Theorem 6. If Legitp, is true, then all nodes are disabled
with respect to protocol Pr.

Proof:  Assume that Legifp_ is true and let v denote
a legitimate cell. Then cell v is dialog-paused and hence
protocol R, is disabled for all responding nodes. Rules 1 and
3 of protocol () are disabled as well. Rule 2 of protocol @
depends on startCondg(v) which is false, since cell v is copy-
consistent and protocol P is disabled for node v. |

Theorem 7. Protocol Pr terminates after a finite number of
moves.

Proof: Maodifications of the primary state of a cell only
result from either the execution of protocol P or from a direct
modification during the repair of a cell. As long as there
are no direct modifications, the number of possible moves of
protocol P is finite since protocol P is silent. After each direct
modification by a repair, the stabilization process of protocol
P starts over. This happens at most n times, since each cell
is repaired at most once by Lemma 4. In conclusion, the total
number of modifications of primary states is finite.

Let v denote a cell. A complete cycle of the state machine
takes at most 4A + 5 moves. By Lemma 3, cell v is repaired
after a finite number of moves. After these moves, cell v
only starts a new cycle, if protocol P is enabled on node
v. By the time cell v is about to finish the transaction
REPAIRED — EXECUTED, protocol P might be disabled on
node v. Then at least one cell neighboring to v must have
modified its primary state. Otherwise, v.p is modified by the
execution of protocol P. At least one modification of a primary
state happends during each cycle of v. Hence, the number of
cycles executed by cell v must be finite. O

Theorem 8. Protocol Pr is silent and self-stabilizing.

5.2. Proof of Fault-Containment

In the following, the initial state is assumed to be a 1-faulty
state that has been derived from a legitimate state by perturbing
variables of node v only. There may exist multiple choices of
a legitimate state and a node v which yield the same 1-faulty
state. The proofs hold for all of them.

Let Legitp be the predicate that decides whether the primary
state is legitimate with respect to protocol P. Where possible,



the stricter predicate Legitp will be used.
Legitp =Yv € V : =Gp(v)

The predicate is true if and only if protocol P is disabled on
all nodes. It is easy to see that Legitp, = Legitp holds. Since
protocol P is silent, Legitp = Legitp must also hold.

Note that in the initial state, all cells w ¢ N(v) U {v} are
legitimate and therefore disabled. They stay legitimate and
disabled, if none of the cells in N(v) change their primary
state. That is shown be the case.

Due to the page limitation, the proofs have been shortened
and do not cover the case that the system consists of a single
edge only. A discussion of this case is given in Section 4.2.3.

In a 1-faulty initial state, cells differ from dialog-paused
cells in the dialog-variables of at most one node. In addition
to the discussion at the beginning of Section 4.2, a modified
version of Lemma 1 applies. It shows that cells that are
not already dialog-consistent, perform a reset and become
dialog-paused within the first round and without changing
their primary state or copy-variables. Cells, of which only the
dialog-variables have been corrupted, may become legitimate
within the first two rounds. The first transition that all other
cells execute, is PAUSED — REPAIRED. The proofs focus
on this and the following transitions. Note that none of the
acknowledgements of this particular transition can be part
of the 1-faulty initial state. This shows that the value of
the decision-variables is always re-computed after a fault.
Otherwise, their value could induced by a fault which would
lead to unwanted behaviour.

Lemma 9. As long as cell v is not repaired, no cell neigh-
boring to v changes its primary state or copy-variables.

Proof: It can be assumed that v.p has been corrupted
and that cell has not yet completed the transition to state
REPAIRED yet. Otherwise, cell v would be repaired. Now let
u denote a cell neighboring to v.

If node u has multiple neighbors, then cell v does not
perform a repair by either line 1 or line 3 of actiong(u),
depending on whether v.c,, has been corrupted.

If node u has only one neighbor, then the condition in line 4
of actionp, (v) is false because v.p has been corrupted. Hence,
v.d,, is set to KEEP.

In all cases, cell u becomes blocked if it attempts to execute
the transition REPAIRED — EXECUTED. d

Lemma 10. Let c be the first global state, in which cell v is
repaired. Then Legity(c) holds.

Proof: 1f v.p has not been corrupted, then c is the initial
state and Legit}>(c) holds. If v.p has been corrupted, then cell
v must complete the transition to state REPAIRED to become
repaired. If node v has multiple neighbors, then actiong(v)
will restore the value of the primary state in line 4. That move
yields c. Now, assume that node v has only one neighbor and
let w denote this neighbor. Cell u is either copy-consistent,
with the exception of v.c,. It depends on the evaluation of the
guards, whether the condition in line 4 of actiong, (u) is true.
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Hence, u.d, is set to UPDATE only if protocol P is enabled
for node u or v. Otherwise, cell v does not need to change its
primary state and u.d, is set to KEEP. Depending on u.d,, the
primary state of cell v is set to u.c, in line 6 of actiong(v).
That move yields c. O

Theorem 11. Let ¢ the be first global state for which Legitp
holds. Then Legity holds for all subsequent global states.

Proof:  Let {cg,c1,ca,...) be an execution of proto-
col Pr. Let ¢; be the first global state, in which cell v is
repaired. The move that yields c¢; will be first that alters the
primary state of cell v. By Lemma 9, no cell neighboring
to v changes its primary state prior to ¢;. Hence, if Legitp
holds for any global state c;,k < 4, then it holds for all
¢j,j=k,...,i—1 and Legitp(c;) holds by Lemma 10.

Starting in ¢;, no cell will change its primary state by
execution of protocol P as long as Legitp holds. It remains
to show that no cells changes its primary state by repair. For
a cell u neighboring to v, this follows from either lines 1 and
3 of actiong(u) or line 4 of actiong, (v). If cell v is already
repaired before reaching state REPAIRED, then it has to be
copy-consistent and it won’t perform any repair because of
line 1 of actiong(v). O

Corollary 12. Let c the be first global state for which Legitp
holds. Then Legitp holds for all subsequent global states.

Theorem 13. The worst-case containment time of protocol P
is 4 rounds.

Proof:  Since the initial state is 1-faulty, a modified
version of Lemma 3 shows that cell v becomes repaired within
the first 4 rounds. Then Lemma 10 applies. 0

Theorem 14. The worst-case contamination number of pro-
tocol Pr is 1.

Proof:  Follows directly from Lemmas 9 and 10. O

Theorem 15. Protocol Py is fault-containing with respect to
Legitp.

5.3. Fault-Gap and Stabilization Time

Theorem 16. The worst-case fault-gap is 10 rounds.

Due to the page restriction, we only give a short sketch of
the proof: Since the initial state is 1-faulty, a modified version
of Lemma 3 shows that each cell reaches state REPAIRED
within the first 4 rounds. Then none of the cells is blocked and
they complete the current cycle of the state machine by the
end of round 10. At the end of the cycle, copy-consistency has
been restored and by Lemma 10 and Theorem 11 protocol P
is disabled for all center nodes at the end of the cycle. So all
cells are legitimate.

Lemma 17. Let {(cg,c1,¢2,...) be an execution of Pr and let
¢; denote the first state of the execution, in which all cells are
dialog-consistent and repaired. If protocol P stabilizes from
¢; in at most T’ rounds, then protocol Pr stabilizes from cq in
at most 9T + 15 rounds.



Again, due to the page restriction, we only give a short
sketch of the proof: Observe that a dialog-consistent and
repaired cell does not change its primary state by any action
other than executing protocol P. To execute one round of
protocol P, protocol Pr has to give each node the chance
to execute a move of P. It can be shown that this is the case
within nine rounds of protocol Pp, simply because a complete
cycle of the state machine takes nine rounds. There are two
exceptions: First, a cell could be blocked. But this cannot
be the case, since it is assumed that all cells are repaired.
Second, the start-condition startCondg could be false for a
dialog-paused cell. A dialog-paused repaired cell is always
copy-consistent. Hence, the start-condition can only be false
if protocol P is disabled for the center node. But then the
current round of protocol P is already finished for that node.

The 15 rounds in addition to the 97" rounds consist of the
seven rounds in which all cells become dialog-consistent and
repaired (See Lemmas 1 and 3) and another eight rounds for
all cells that might have to complete a just begun cycle of
the state machine after protocol P has finished stabilizing.
Leaving such minor terms aside, this leads to the following
observation about the worst-case stabilization time:

Theorem 18. The slowdown-factor of protocol Pr over pro-
tocol P is 9.

6. Concluding Remarks

Asymptotically, the worst-case stabilization time of proto-
col Pp differs from that of protocol P by a constant slow-
down factor only. Compared to protocol P, the space required
by protocol Pp increases by a factor of about A+ 1. Methods
on how to lower the slow-down and space requirements are
currently investigated. An alternative repair method [9] that
causes only temporary space-overhead is not applicable.

In contrast to the transformation in [9], protocol Pr does
not depend on any knowledge about the size of the system.
Hence, it scales well to systems of any size at run-time. A
further advantage is that faults are tightly contained, even
concerning their impact on secondary variables. In fact, only
cells neighboring to the faulty node become enabled.

The fault-gap of protocol Pr is constant. It does not depend
on the size of the system or the degree of the nodes. This is
an improvement over all known general transformations for
asynchronous system. It makes the transformation suitable for
systems with a large number of nodes and greatly increases
their availability.

Since the repair mechanism is based on local knowledge
only, protocol P always successfully repairs multiple faults,
if the minimal distance between the faulty nodes is large
enough. A minimal fault-distance of 4 should be sufficient. For
systems with high average node degree, the repair mechanism
can be modified to use a majority vote to determine the
correct primary state. Then protocol Pr may even recover
from multiple faults within the same neighborhood.

Protocol Pr does not explicitly rely on unique node-
identifiers. But every node executes multiple instance of pro-

427

tocol R,, each one designated to a different center node. The
center nodes must be able to identify the variables designed to
them. For example, locally unique identifiers provide a suitable
mechanism. Another suitable mechanism is port-numbering
[1], but the definition does not have a natural equivalent in
the shared memory model.
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