
RFID for mobile applications
Arne Bosien, Volker Turau

Institute of Telematics
Hamburg University of Technology (TUHH)

Hamburg, Germany
{arne.bosien|turau}@tuhh.de

Abstract—The availability of fast anti-collision algo-
rithms is crucial for most RFID applications. This pa-
per aims to evaluate these algorithms for applications
in which it is not intended to identify the entirety of
moving objects but to detect as much tags as needed to
allow orientation. The navigation of Automated Guided
Vehicles (AGV) by distributed landmarks is an example
which clarifies the discriminative requirements com-
pared to supply chain tasks. For the former purpose
redundant information can be gained from different
tags. This requires the detection of an application
dependent percentage of all tags. Because AGVs are
moving, the detection and read and write operations
have to be close together and very fast, since repetitive
communication is not always possible.

I. INTRODUCTION

In traditional RFID applications it has been re-
quired to detect all RFID tags in range. This may
be useful if the determination of all products in a
shopping cart is wanted, but this is not suitable for
all imaginable uses.

The availability of fast anti-collision algorithms
is crucial for most systems, but the employment in
mobile applications makes higher demands on the
communication speed because the reader is moving.

A. The meaning of anti-collision

To allow the communication with a specific RFID
tag, all tags in the range of the RFID reader have
to be identified at first. For this purpose the reader
sends a single command which causes all tags to
respond and send back their ID to the reader. Since
the tags are not able to communicate with each
other, the transmission of their responses leads to
collisions, which inhibits the identification of the tags
for the reader. To solve this challenge, anti-collision
algorithms are required.

B. RFID for navigation purposes

Several approaches make use of stationary tags for
orientation [Zam07], [Pec08] or navigation services
of AGVs [BVT08], [NBOF06]. In this context it is
not necessary to determine all tags by all means, and

the speed of detection may overrule the importance
of the completeness of an inventory if a high driving
speed is necessary.

1) Example: Detection of one tag: To detect one
single tag, which is exactly lying on the path of
the reader, with a realistic detection time of tinv =
0.030 s and a reader range of r = 0.15 m a maximum
speed of

v =
x

t
=

2r

tinv
=

0.30 m

0.030 s
= 10m/s

is possible. From the Nyquist-Shannon sampling the-
orem follows that at least two scans are necessary to
detect the tag for sure. Therefore, the speed reduces
to v = 5m/s.

2) Detection of more tags: Furthermore, the max-
imum speed is reduced if more tags are within the
interrogation area. The number of requests to detect n
tags with a simple anti-collision algorithm (described
in section III-B) and incremented tag IDs can be
calculated as the number of nodes of a binary tree.
The height of this tree is given by h = log2(n).

The time for a complete anti-collision cycle then
can be estimated as:

tinv(n) =
(
2h+1 − 1

)
tinv

=
(
2log2(n)+1 − 1

)
tinv

The maximum speed for n = 4, tinv = 0.030 s and
r = 0.15 m is reduced to:

v =
1
2
· 2r(

2log2(n)+1 − 1
)
tinv
≈ 0.71 m/s

3) Detection of boundary tags: As the reader is
moving, the distance x, while a tag is in range of the
reader, also depends on the offset y to the path (see
Figure 1), which can easily be computed as:

x = 2
√

r2 − y2

Increasing the radius leads to a greater period
when the detection is possible but unfortunately also
to a higher amount of included tags if the tag density
remains unchanged.



r

x

y

Driving

direction

Fig. 1. RFID tags within the reader range

This underlines the special importance of fast anti-
collision algorithms, especially if tags in boundary
areas are also required to become detected.

C. Technologies

Several technologies exist to enable the usage of
RFID in different environments. One criterion is the
chosen operating frequency of the tags, which effects
the distance wherein tags are accessible by the reader.

For the needs of navigating AGVs a range in the
dimension of centimetres is wanted. These require-
ment are fullfilled by remote-coupling systems, that
operate at distances between 1 and 100 centimetres
and in the high frequency domain of 3-30 MHz.
Furthermore writeable tags are available for these
frequencies at a low price.

II. STATELESS VS. STATEFUL

In the domain of high frequency RFID two fun-
damental different techniques are applied. They can
be splitted into stateful and stateless anti-collision
algorithms. Stateful algorithms require the tags to
store information during the anti-collision process,
while stateless algorithms have lower demands from
the tags.

A. ALOHA (stateless)

ALOHA based anti-collision protocols are very
simple protocols, which allow the tags to send their
data whenever they want [Fin06]. The anti-collision
is founded on the probability that two tags don’t
transmit at the same time. Slottet ALOHA enhances
this procedure by introducing a number of defined
slots, in which the tags may answer. Dynamic slotted
ALOHA expands this by using a dynamic number
of slots, which is adapted to the amount of involved
tags.

B. Binary tree (stateful)

A binary tree anti-collision algorithm detects the
tags by traversing the binary tree of possible tag IDs.
For this purpose the reader transmits a sequence of
bits.

After each received bit the tags compares if the
corresponding bit of its own ID is matching. The
tags maintain a pointer, which marks the current
bit position in the ID. With every received bit the
pointer is incremented. If the received bit mask is
matching the ID, a tag sends the remaining bits of
its ID to allow its identification. If more than one
tag is responding, collisions are occurring, which
prevents the identification of tags. If the bits are not
matching the ID, a tag doesn’t respond and quits its
participation in the anti-collision cycle for now.

If collisions are detected, the reader is caused to
send more bits until one tag can be identified or no
tag is responding anymore. In both cases the reader
sends another request command to reduce the bit
mask to a shorter one. This causes quiet tags to
participate again if the mask is short enough. This
procedure is repeated until all tags are identified.

C. Query tree (stateless)

In query tree algorithms the reader sends out an
inventory request with a part of a tag ID (mask,
sometimes also called prefix), that causes all tags
with matching ID to respond their whole ID. This
may lead to collision. In the next step the reader
extends the mask, which now matches to fewer
responding tags. This procedure is repeated until only
one tag is responding and hence is identified.

In each step the whole logic is performed by the
reader. The tags just compare the received prefix with
their ID and respond or not.

The advantage of a query tree algorithm is its
simplicity on side of the tags and the ability to
development better algorithms just by improving the
algorithm performed by the reader without touching
the behaviour of the tags.

III. ALGORITHMS FOR QUERY TREE

A. Enabling technology

1) ISO-15693: The requirements for the following
introduced algorithms are fulfilled by standards like
ISO-15693for instance [ISO00]. The response to an
inventory request is send by all tags at the same time.
The transferred bits become superposed and even if
collisions occur, the result may still be evaluated and
used for the next improved inventory request.

This is achieved by using Manchester Coding.



2) Manchester Coding: Manchester Coding di-
vides one bit into two signals. A high-to-low tran-
sition expresses a logical 0 and a low-to-high transi-
tion a logical 1. When two simultaneous transferred
signals differ, the received data stream shows illegal
parts which can be evaluated.

Result
x 1

Data 2
1 1

Data 1
0 1

Bit 1 Bit 2

Fig. 2. Collision detection with Manchester Coding

3) Application to RFID: A collision can be caused
by any number of tags, and it is not possible to
determine the exact number of involved tags.

Tag 1 1001
Tag 2 0101
Tag 3 1101
Result xx01

Tag 1 1001
Tag 2 0101
Result xx01

Tag 2 0101
Tag 4 1010
Result xxxx

The number of collision bits give information
about the upper boundary of how many tags are
involved. Since every collision is caused by at least
two tags, n collisions are caused by maximum n2

tags.
Some RFID readers just return the position of

the most significant collision position, even if they
detect the rest. In the following it is required that all
collision positions are known.

B. Standard recursive algorithm

ISO-15693 presents a simple recursive algorithm
for a complete inventory. This algorithms implements
a depth-first search to identify all tags in range but
offers many possibilities for improvement.

Tag ID (Hex) Binary
1 BA6 1010 1010 0110
2 A45 1010 0100 0101
3 F6B 1111 0110 1011
4 AAA 1011 1010 1010

As a first step an empty mask is sent, which makes
all tags respond. In the second step the mask is
extended to 0, which matches to tag 1 and tag 4.
The renewed extension to 00 leads to no answer,
since none of the tags ends with this bit sequence.
Now this arm is left and in step 4 the mask consists
of 10, which causes again tag 1 and tag 4 to respond.
Transmitting of 010 leads to the identification of a

single tag for the first time. Next 110 yields another
tag. Now the 0-branch has been completed so that
step 7 is going on with 1. The remaining steps are
according to the previous ones and detect tag 2 and
tag 3.

Step Mask Response Meaning
1 ø 1x1x xxx0 xxxx coll., extend mask
2 0 101x 1010 xx10 coll., extend mask
3 00 ø no response
4 10 101x 1010 xx10 coll., extend mask
5 010 1011 1010 1010 Tag 4 detected
6 110 1010 1010 0110 Tag 1 detected
7 1 1x1x 01x0 xxx1 coll., extend mask
8 01 1010 0100 0101 Tag 2 detected
9 11 1111 0110 1011 Tag 3 detected

C. Tag-ID-design with parity bit

The following approach is a combination of anti-
collision algorithm and the selection of tag IDs
[KKLA08]. It makes the assumption that the least
significant bit of the tag ID is a parity bit. When this
is given, in case of two remaining collision two tags
can be identified at the same time.

1) Identify two tags at the same time at one
collision: If a single collision occurs, it is possible
to identify two tags at once. Just the IDs of tag 1 and
tag 2 exist to explain the result of the collision.

Tag 1 1001
Tag 2 1101
Result 1x01

2) Identify two tags at the same time at two
collisions: In the next example the least bit is a parity
bit whereas a 1 indicates an even number of ones in
the tag ID.

Tag 3 0001
Tag 4 1011
Result x0x1

As in section before this leads in a first step to two
possible tag IDs: x001 and x011

But because the last bits indicates the number of
ones, it can be concluded that the first tag ID is 0001
and the second one 1011.

While this speeds up the inventory it reduces the
number of possible IDs by the factor of 2. For
application like suggested in [BVT08] it may be
sufficient if the ID is unique during a certain area and
not necessarily across the whole operating area. This
would allow the reuse of tag IDs in case availability
of unused IDs is getting short.



D. Setting tags quiet

If a tag is not only to be inventoried but also to be
written or read, an interesting possibility of nesting
inventory and read/write operations appears [Fin06].
As soon as a tag has been found during the normal
anti-collision cycle, the tag will be selected with a
first command. The next command is for read or
write operations, and the last one puts the tag into
the sleep state. Thus the tag will not take part in the
anti-collisions anymore, even if a matching mask has
been sent.

The anti-collision algorithm could use this ap-
proach to continue with shorter mask, since now
it is not more required to exclude the previous
found tag from responding to inventory request. This
technique is only reasonable if tags are to be written
or read indeed. In any other case putting a tag to
sleep takes two much time due to the fact that the
whole tag ID has be transferred. Only by combining
select, read/write and sleep commands this approach
becomes meaningful.

Despite the slight improvement this approach may
offer to the inventory speed of one anti-collision
cycle, the main advantage is shown when more
inventories are executed in succession. Because in the
next cycle previously inventoried tags don’t appear
again, and only new tags have to be identified. Of
course this is an disadvantage if the information is
wanted if a tag is still in the reader’s range or not.

E. Remember masks

Myung and Lee propose another approach to im-
prove the speed of repeated inventories [ML05]. The
algorithms stores the masks, which cause only one
tag to respond (identified node) and those, which
cause no tag to respond (no-response node). In the
following cycle the stored masks are proved. New
tags either collide with a recurring tag or make no-
respond nodes become identifying nodes. The former
case requires a new anti-collision process for this
part of the tree. If instead a tag leaves the field, an
unidentified node becomes a no-response node and
can possibly be merged with another no-response
node.

Similar to the approach of the previous section this
approach reduces the time of repeated inventories
when the involved tags don’t change or just to a
small amount. But in contrast all tags currently in
the reader’s range are detected. A drawback can be
expected when many tags are changed, because then
storing of old masks doesn’t pay off and leads to
many useless requests.

IV. IMPROVEMENTS

A. General improvements

This section describes general improvements,
which can be combined with the algorithms intro-
duced in section III.

1) Omit empty branches: The first very obvious
improvement is to omit apparent unnecessary request.

In section III-B transmitting 00 in step 3 leads to
no responding tags. A closer look on the response
of step 2 shows that there are no collisions in the
last two bits (xx10) and that the second bit is a
1. Therefore, step 3 can be omitted, which test for
known not existing tags.

2) Jump to collision position: The second im-
provement is similar to the previous one and omits
request that leads to same results as previously per-
formed requests.

This can be examined in step 4 which leads to the
same response as step 2. Since step 2 is known that
the last two bits don’t collide, so it is not necessary
to prove these bits again. Step 4 also can be omitted.

3) Don’t start with empty query: Can be assumed
that many tags are within the readers range, it is
reasonable not to start with an empty query since this
will lead to collisions with a very high probability. If
an uniform distribution of tag IDs can be supposed,
the probability that the IDs of three tags don’t lead
to a collision in the last bit is 2 · 0.53 = 0.25, which
means that in 75% of all cases a collision can be
expected. This makes it meaningful to start with the
queries 0 and 1. The more tags can be expected the
start query can be extended to 00, 01, 10, 11 etc.

Of course this approach may lead to failed request
if no tag fits the supposed initial query.

But it should be noticed that the execution of a
request that leads to no responding tags is faster
than a request with responding tags, because no
transferred IDs have to be received.

4) Extension of mask: Furthermore it can be con-
sidered to apply the approach of the section before
not only to the start query but also to the ongoing
anti-collision. [HYHH08] presents a simple approach
that adapts the extension of the mask during the anti-
collision cycle to the remaining bits of the tag ID.
The length of the mask is calculated as RPB =∑K

S
N
2S . N is the overall length of the tag ID, S ≤ N

is the level of the query tree and K = log(N).
Another approach could be to adapt the extension

not to the remaining bits but to the occurred collisions
and the herewith estimated remaining tags.



B. Improvements for moving objects

Previously presented algorithms are suitable for
the shopping cart scenario. For navigation of AGVs
it is not necessarily required to detect all tags. Since
an AGV is moving, the detection speed has a greater
importance, and it is also imaginable that the detec-
tion of only very few tags is sufficient.

1) Guess arms and compare collisions: If the
results of step 1 and step 2 (section III-B) are
compared, it can be concluded that there is at least
one tag that ends with 01 since the 0-arm leads
to collisions in bit 3 and bit 4 but not in bit 2.
Therefore, step 7 could be committed and step 8
executed directly.

Now comparison between steps 1, 2 and 8 shows
that not all collision of the response of step 1 can be
explained (watch 11th bit). This means that at least
one other tag exists in the 11-arm.

Unfortunately even if all collision could be ex-
plainable, it can not be eliminated that there are
remaining undiscovered tags. This approach can be
considered if speed is more important that the com-
pleteness of the inventory.

2) Remember n-bit masks: The algorithm pre-
sented in section III-E is useful for repetitive inven-
tory processes in a static environment. If tags leave
the interrogation area, this will cause request which
don’t generate responses [Kha09]. This issue can not
be avoided generally, but it can be moderated by
limiting the length of the stored mask depending on
the number of found tags.

3) Select tag IDs: It can be observed that the
inventory speed not only depends on the number
of tags but also on the involved tag IDs. While a
collection of the tags

Tag 1: 0111 Tag 2: 0101
Tag 3: 0110 Tag 4: 0100

can be detected very fast (Figure 3) and requires short
masks lengths of at most 2 bits, the inventory of the
following tags requires more anti-collision steps:

Tag 1 1111 Tag 2 1011
Tag 3 1001 Tag 4 1000

On the other hand one tag (1000) can be detected
very fast and by transmission of just a one bit mask
(0).

For AGV navigation the inventory is always per-
formed for stationary and proximate tags. This fact
can be exploited to enhance the inventory speed by
putting only tags into neighbourhood whose IDs are
easy to detect.

x
1

110
010

0
110
010

x
1

1
11
01

001
0001

Fig. 3. Balanced and unbalanced tag ID tree

Furthermore the IDs can be selected in a way that
they differ preferably in few bits. This accelerates the
inventory process regarding to section III-C1.

C. Improvements for special tag distributions

1) Estimate tag quantity in arms: In the following
it is supposed that a method exists to estimate a
more or less correct number of tags in an arm. This
maybe can be achieved by analysing the number
of collisions and a good knowledge of the tag ID
distribution.

Then an algorithm could be designed to take ad-
vantage of strong unbalanced structures like in Figure
3 and handle short arms at the beginning to find
first tags very fast. This does not necessarily improve
the duration of a complete anti-collision cycle but it
minimises the average tag detection time.

Such an algorithm could perfectly be used if not
all tags are needed to be detected and can abort if a
defined number of tags is found.

2) Exploitation of balanced ID trees: An ap-
proach to exploit an ID distribution of sequential
IDs, which leads to a more or less balanced tree
(Figure 3), is given in [KYK08] and called Sidewalk.
This make use of the observation that allmost all
identifying nodes are at the same level.

Once the depth of the tree has been determined by
breadth-first search, this algorithm checks for tags
at all other arms at the same depth. Generally this
may lead to requests without responses but this is ac-
cepted. The presented algorithm also works for other
ID distributions but reaches its best performance for
sequential IDs.

V. SIMULATION RESULTS

The most important algorithms have been simu-
lated with different tag ID distributions. None of the
simulated algorithms is designed to make use of the
knowledge how the IDs are distributed.

A. Speed simulation

For the simulation of the behaviour of algorithms
executed on a moving RFID reader, the three follow-
ing distributions have been used:



∅
Fo

un
d

ta
gs

Speed (m/s)

Incremented Tag IDs

Rec.

JTC

+2@1

+Q2

∅
Fo

un
d

ta
gs

Speed (m/s)

Unbalanced Tag IDs

Recursive
JTC
JTC+2@1
JTC+2@1+Q2

∅
Fo

un
d

ta
gs

Speed (m/s)

Random Tag IDs

Recursive
JTC
JTC+2@1
JTC+2@1+Q2

Fig. 4. Recursive algorithms with several Tag ID distributions

Incremented Tag IDs The tag IDs are counted up.
This yields to a balanced and dense tree. The initial
ID is generated randomly.

Unbalanced Tag IDs The IDs of the tags are
selected in such a way, that a strong unbalanced
tree is build. The initial ID is generated randomly.
All other IDs contain the same lower bit pattern of
random length.

Random Tag IDs The whole ID of the tags are
generated randomly, which results in a balanced tree.

30 tags have been placed in a grid of 3x10 tags
with a length of 1 m and a width of 0.25 m. The
RFID reader moves with a constant velocity over
the grid and the inventory is continuously repeated.
The range of the reader has been set to 0.14 m. This
means that up to six tags are at the same time inside
the range of the reader. Each simulation has been run
100 times and the result has been averaged.

Figure 4 shows the result for different modification
of the standard ISO-15693 algorithm (see section
III-B). Because of the nature of the simulation (the
time dependent positions of the reader is always

∅
Fo

un
d

ta
gs

Speed (m/s)

Incremented Tag IDs

Q2
Breadth
Rem

∅
Fo

un
d

ta
gs

Speed (m/s)

Unbalanced Tag IDs

Breadth
Rem. M.
Q1

∅
Fo

un
d

ta
gs

Speed (m/s)

Random Tag IDs

Q2
Breadth
Rem

Fig. 5. Various algorithms with several Tag ID distributions

the same) the resulting curve is very rough when
incremented tags ID are simulated. Here jumping to
collision positions (JCP) doesn’t enhance the perfor-
mance. Identifying two tags at the same time (2@1)
gives a notable advantage of up to 88% (at a speed
of 2 m/s). Using an additional initial query (Q2)
with four masks (00, 01, 10, 11) leads to another
sizable improvement of up to 188% (v = 1.95 m/s)
compared to Rec/JTC.

With unbalanced tags, the main improvements can
be observed by jumping to the collision position.
Initial query masks lower the performance.

The best performance with random tag IDs is again
reached by using initial query masks. As before, the
2@1 modification doesn’t pay off.

Figure 5 show result of the simulation of differ-
ent anti-collision approaches, including Breadth First
Search and an algorithm that remembers previously
detected tags. It can be observed that for incremented
and random tag IDs again Q2 gives the best perfor-
mance.



∅
R

eq
ui

re
d

ti
m

e
(m

s)

Number of tags

0.95 0.1

JCP+2@1
Breadth

∅
R

eq
ui

re
d

ti
m

e
(m

s)

Number of tags

0.8 0.1

JCP+2@1
Breadth

∅
R

eq
ui

re
d

ti
m

e
(m

s)

Number of tags

0.6 0.1

JCP+2@1
Breadth

Fig. 6. Breadth First Search and Depth First Search algorithms
with different tag ID distributions

B. Unbalanced distributions

Figure 6 shows the different behaviour of Breadth
First and Depth First Search algorithms and time
which is needed to detect 30 Tags with unbalanced
tag ID distributions. Each simulation has been run
1000 times.

Both algorithms have the same execution time, but
it can be seen that down have a constant detection
rate. The Breadth First Search has its benefits for
higher p. Balanced distributions (lower p) are the
domain of Depth First Search algorithms.

VI. CONCLUSION

The possible driving speed of AGVs is directly
linked to the speed of the inventory and the tag com-
munication. Therefore, fast anti-collision algorithms
are required.

The inventory algorithms can take advantage of all
optimisations suggested to the inventory of classical
RFID application, but moreover new optimisation

possibilities are arising. It was shown that the inven-
tory speed is connected to the distribution of involved
tag IDs. While normally just a limited influence on
this distribution is given, in the suggested applica-
tion the tags are stationary and fixed, which offers
a greater control over tags in the reader’s range.
Therefore, the selection of ideal tag IDs appears as
a new challenge.

Furthermore, it is not longer required to detect all
tags. Here, to shorten the time until first tags can be
identified gains more importance.

In respect to this, new criteria for measuring the
efficiency of algorithms are needed, because common
anti-collision algorithms try to optimise the overall
inventory speed.

Not discussed here is the employment of slotted
query tree algorithms, which offers capabilities es-
pecially for balanced ID structures.

REFERENCES

[BVT08] Arne Bosien, Marcus Venzke, and Volker Turau. A
rewritable RFID environment for AGV navigation.
In Proceedings of the 5th International Workshop
on Intelligent Transportation (WIT’08), Hamburg,
Germany, March 2008.

[Fin06] Klaus Finkenzeller. RFID Handbuch. Carl Hanser,
4. edition, 2006.

[HYHH08] Ching-Hsien Hsu, Chia-Hao Yu, Yi-Pin Huang, and
Kyung-Jae Ha. An enhanced query tree (eqt) proto-
col for memoryless tag anti-collision in rfid systems.
volume 1, pages 427–432, Dec. 2008.

[ISO00] ISO/IEC. Iso/iec fcd 15693-3 part 3: Anti-collision
and transmission protocol, 03 2000.

[Kha09] Sascha Khan. Optimization of rfid anti-collision
algorithms. Master’s thesis, Hamburg University of
Technology, May 2009.

[KKLA08] SungSoo Kim, YongHwan Kim, SeongJonn Lee,
and KwangSeon Ahn. An improved anti collision
algorithm using parity bit in rfid system. volume
Seventh IEEE International Symposium on Network
Computing and Applications. IEEE, 2008.

[KYK08] Hyunho Koh, Sangki Yun, and Hyogon Kim. Side-
walk: A rfid tag anti-collision algorithm exploiting
sequential arrangements of tags. In ICC, pages
2597–2601, 2008.

[LXXL] Leian Liu, Zhenhua Xie, Jingtian Xi, and Shengli
Lai. An improved anti-collision algorithm in RFID
system. Technical report, South China University of
Technology.

[ML05] Jihoon Myung and Wonjun Lee. An adaptive mem-
oryless tag anti-collision protocol for rfid networks.
2005.

[NBOF06] Björn Niemann, Mathias Baum, Ludger Overmeyer,
and Dirk-H. Fricke. Aufbau von fahrerlosen trans-
portsystemen (fts) durch eine dezentrale datenstruk-
tur. Logistics Journal, 2006.

[Pec08] Morgen E. Peck. RFID Tags Guide the Blind. IEEE
Spectrum, 1, 2008.

[Zam07] Marco Mameiand Franco Zambonelli. Pervasive
pheromone-based interaction with rfid tags. ACM
Trans. Auton. Adapt. Syst., 2(2):4, 2007.


	Introduction
	The meaning of anti-collision
	RFID for navigation purposes
	Example: Detection of one tag
	Detection of more tags
	Detection of boundary tags

	Technologies

	Stateless vs. Stateful
	ALOHA (stateless)
	Binary tree (stateful)
	Query tree (stateless)

	Algorithms for query tree
	Enabling technology
	ISO-15693
	Manchester Coding
	Application to RFID

	Standard recursive algorithm
	Tag-ID-design with parity bit
	Identify two tags at the same time at one collision
	Identify two tags at the same time at two collisions

	Setting tags quiet
	Remember masks

	Improvements
	General improvements
	Omit empty branches
	Jump to collision position
	Don't start with empty query
	Extension of mask

	Improvements for moving objects
	Guess arms and compare collisions
	Remember n-bit masks
	Select tag IDs

	Improvements for special tag distributions
	Estimate tag quantity in arms
	Exploitation of balanced ID trees


	Simulation results
	Speed simulation
	Unbalanced distributions

	Conclusion
	References

