Programming Wireless Sensor Networks in a
Self-Stabilizing Style

C. Weyer! V. Turau® A. Lagemann? J. Nolte?
Institute of Telematics
Hamburg University of Technology
?Distributed Systems/Operating Systems

Brandenburg University of Technology Cottbus

The Third International Conference on Sensor Technologies and
Applications, 2009

Bramdragecns Tt Unves Cotos

A. Lagemann Self-Stabilizing WSN

Outline

Outline

Motivation
Short Introduction to Self-Stabilization
Self-Stabilization in WSN

Main Results

A. Lagemann Self-Stabilizing WSN

Opsing ey
Self-stabilizing Systems in
Spite of Distributed Control

Edsger W. Dijkstra
Burroughs Corporation

Key Words and Phrases: maltprocessing, networks,
sef-stabilization, synchronization, mutusl exclusion,
taring, crror recovery, distributed control,
harmonious cooperation, sell-repaic
CR Categories: 4.32

The synehronization task. between Ioosely coupled
eyelic sequential processes (as can be distinguished in,
for instance, operating systems) can be vi

ing the relation “the system s in & legitimate state” in
variant. As a result, cach individual process sicp that
could possibly cause violation of that relation has 1o
be preceded by a test deciding whether the process in

current system
Tocal actions taken on account of loc
must eccomplish a global objectve. Such systems (with

Vet i guite aply culed “distibuted control”) have
e desiged b ,u such designe 1 was falar with

st decripion tht i walble 0 it
1 information

on o Cormpu

Motivation

Self-Stabilization

See helow—is interesting as a starting procedure, for

Song whichthey hd to. rsange her cooperas

e s connicred eaph in which the mor-

ity of the possble edges sre missing and 4 fnite statc

machine i placed at each node; machines placed in
discetly connd
For cac

=t Definition

eitimate sates there exsts @ sequence of moves trans-
fering the system from the one into the other.
system “self stabilizing’” it and only if,
regardless of the inital state and. regardiess of the
privlege selected cach time for the next move, at least
e privicge will always be present and the system is
guaranteed (o find itsclf in a legitimate state after a
finite number of moves, For more than a year—at least
t0 my knowledge—it has been an open question
whether nontrivial (e al states legitimate is consid-
ered trivial) self-sabilizing systems could exist It is

set. For b
sake most of the heuristes that led me to find them,
together with the proofs that they s:

ments, have been omitted an

R ent on an carlir draft, “the appreciation
i left as an exercse for the reader” (For the cyclic
arrangement discussed below the discovery that not all

Communicaions o 1974

fhe Ach

A. Lagemann

(Dijkstra 1974)

Self-Stabilizing WSN

“v: We call the system “self-stabilizing” if and only if,
regardless of the initial state [.
guaranteed to find itself in a legitimate state after a
finite number of moves.

.] the system is

Motivation

Fault Model

e 2 e Transient faults
e e Caused by environmental influences

e Wireless channel characteristics
e Cosmic rays

e
/

\ e Lasting effect on state of the network
& e Message loss or corruption
- e Reset of nodes

e Corruption of memory

A. Lagemann Self-Stabilizing WSN

Motivation

Fault Model

Transient faults

Caused by environmental influences

e Wireless channel characteristics

e Cosmic rays
[e

Lasting effect on state of the network

e Message loss or corruption
e Reset of nodes
e Corruption of memory

Other faults like:

e Discharged nodes
e Broken links

Can be modeled as transient faults

A. Lagemann Self-Stabilizing WSN

Motivation

Benefits of Self-Stabilization

Inherent non-masking fault tolerance
Formally verifiable

Proofs are based on simple model
Transformation to realistic model possible

While preserving self-stabilization property

A. Lagemann Self-Stabilizing WSN

Short Introduction to Self-Stabilization

Maximal Independent Set

Example (Maximal Independent Set)

public bool in;
rule R1:

in = false and forall(Neighbors v : v.in = false)
—> in := true;
rule R2:

in = true and exists(Neighbors v : v.in = true) —>
in := false;

A. Lagemann Self-Stabilizing WSN 6

Short Introduction to Self-Stabilization

Maximal Independent Set

Example (Maximal Independent Set)

public bool in;
rule R1:

in = false and forall(Neighbors v : v.in = false)
—> in := true;
rule R2:

in = true and exists(Neighbors v : v.in = true) —>
in := false;

A. Lagemann Self-Stabilizing WSN 6

Short Introduction to Self-Stabilization

Maximal Independent Set

Example (Maximal Independent Set)

public bool in;
rule R1:

in = false and forall(Neighbors v : v.in = false)
—> in := true;
rule R2:

in = true and exists(Neighbors v : v.in = true) —>
in := false;

A. Lagemann Self-Stabilizing WSN 6

Short Introduction to Self-Stabilization

Spanning Tree

Example (Dolev 2000)

public map NodelD Platform.ID as ID;
public int dist;

public NodelD parent;

declare int minD := min(v.dist | Neighbors v);

rule R1:
ID = 0 and !(parent = null and dist = 0) —>
parent := null;
dist := 0;
rule R2:
ID!=0
and !(parent in (v.ID | Neighbors v : v.dist = minD)
and dist = minD 4+ 1) —>
parent := choose(v.ID | Neighbors v : v.dist = minD);

dist := minD + 1; 5”

ves

A. Lagemann Self-Stabilizing WSN 7

Short Introduction to Self-Stabilization

Vertex Coloring

Vi1
public map int Neighborhood.numOfNeigh as d;
public int c;

N declare set int colors := (1:d);
declare bool

2
vy
Bl := cin (v.c|Neighbors v) or c>d+1;
declare bool
B2 := colors = (v.c|Neighbors v);
“ rule R1:
/ B1 and B2 —>
c:=d+ 1;
- 2
0

& rule R2:

Bl and !B2 —>
¢ := choose(colors \ (v.c|Neighbors v));

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Central Daemon Scheduler

Central entity (called daemon) assumed

Algorithm execution is divided into rounds

Daemon selects exactly one node

Selection is fair

Basically a serialization

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Central Daemon Scheduler

Central entity (called daemon) assumed

Algorithm execution is divided into rounds

Daemon selects exactly one node

Selection is fair

Basically a serialization

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Central Daemon Scheduler

Central entity (called daemon) assumed

Algorithm execution is divided into rounds

Daemon selects exactly one node

Selection is fair

Basically a serialization

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Central Daemon Scheduler

Central entity (called daemon) assumed

Algorithm execution is divided into rounds

Daemon selects exactly one node

Selection is fair

Basically a serialization

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Central Daemon Scheduler

Central entity (called daemon) assumed

Algorithm execution is divided into rounds

Daemon selects exactly one node

Selection is fair

Basically a serialization

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Synchronous

e Algorithm execution is divided into rounds
e Every enabled node is automatically activated

e Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10

Self-Stabilization in WSN

Execution Model — Synchronous

vi1

vy
/ \\ e Algorithm execution is divided into rounds
e Every enabled node is automatically activated

% - _ 6/
o X/ e Is not equivalent to central daemon model!
v2 v3
4
/\ 3
21
v —
4

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Synchronous

e Algorithm execution is divided into rounds
e Every enabled node is automatically activated

e Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Synchronous

e Algorithm execution is divided into rounds
e Every enabled node is automatically activated

e Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10

Self-Stabilization in WSN

Execution Model — Synchronous

/'\

=/
SN

/ \\ e Algorithm execution is divided into rounds

e Every enabled node is automatically activated

— &)
o X/ e Is not equivalent to central daemon model!
I/\ Vacd
—
7

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Synchronous

e Algorithm execution is divided into rounds
e Every enabled node is automatically activated

e Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN

Self-Stabilization in WSN

Execution Model — Synchronous

e Algorithm execution is divided into rounds
e Every enabled node is automatically activated

e Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10

Self-Stabilization in WSN

Transformations for WSN

e Communication Model
o Cached Sensornet Transformation (Herman 2003)

e Execution Model
e Strict transformations
e Deterministic conflict manager (Gradinariu, Tixeuil
2007)
e BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)
e Weak transformations
e Randomized conflict manager (Gradinariu, Tixeuil

2007)
e Randomized transformation(Turau, Weyer 2006)

boc

ves

A. Lagemann Self-Stabilizing WSN 11

Self-Stabilization in WSN

Transformations for WSN

e Communication Model
o Cached Sensornet Transformation (Herman 2003)

e Execution Model
e Strict transformations
e Deterministic conflict manager (Gradinariu, Tixeuil
2007)
e BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)
e Weak transformations
e Randomized conflict manager (Gradinariu, Tixeuil

2007)
e Randomized transformation(Turau, Weyer 2006)

boc

ves

A. Lagemann Self-Stabilizing WSN 11

Self-Stabilization in WSN

Transformations for WSN

e Communication Model
o Cached Sensornet Transformation (Herman 2003)

e Execution Model
e Strict transformations
e Deterministic conflict manager (Gradinariu, Tixeuil
2007)
e BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)
e Weak transformations
e Randomized conflict manager (Gradinariu, Tixeuil

2007)
e Randomized transformation(Turau, Weyer 2006)

boc

ves

A. Lagemann Self-Stabilizing WSN 11

Self-Stabilization in WSN

Transformations for WSN

e Communication Model
o Cached Sensornet Transformation (Herman 2003)

e Execution Model
e Strict transformations
e Deterministic conflict manager (Gradinariu, Tixeuil
2007)
e BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)
o Weak transformations
e Randomized conflict manager (Gradinariu, Tixeuil

2007)
e Randomized transformation(Turau, Weyer 2006)

boc

ves

A. Lagemann Self-Stabilizing WSN 11

Self-Stabilization in WSN

Transformations for WSN

e Communication Model
o Cached Sensornet Transformation (Herman 2003)

e Execution Model
e Strict transformations
e Deterministic conflict manager (Gradinariu, Tixeuil
2007)
e BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)
o Weak transformations
e Randomized conflict manager (Gradinariu, Tixeuil

2007)
e Randomized transformation(Turau, Weyer 2006)

boc

ves

A. Lagemann Self-Stabilizing WSN 11

Self-Stabilization in WSN

Properties of Transformations

e Strict transformations

e Advantage: equivalent to central daemon
e Drawback: limited concurrent activity

e Weak transformations

e Advantage: allow for more concurrency
e Drawback: only probabilistic convergence

A. Lagemann Self-Stabilizing WSN

12

Self-Stabilization in WSN

Major Concern: Convergence Time

Represents responsiveness of algorithms
High convergence time leads to low availability
Major Question: Influence of transformations on convergence time?

Do weak transformations reduce convergence time more than strict
ones?

A. Lagemann Self-Stabilizing WSN 13

Self-Stabilization in WSN

Upper Bounds vs. Average

Determining convergence time analytically yields upper bounds
Analytical determination of average is prohibitive = large value space
Only practical method: simulation

Contribution: analysis of convergence time of three algorithms central
to WSN applications

A. Lagemann Self-Stabilizing WSN 14

convergence time (rounds)

Maximal Independent Set (Density 9)

Main Results Simulations with Density 9

50

—a— BitToss

—+ CMR

CMD

407 _o— Random
301
201
104

100 200 300 400 500 600 700 800 900

number of nodes

A. Lagemann Self-Stabilizing WSN

1000

15

convergence time (rounds)

80

70+

60+

40+
30+

20+

101 e

Main Results Simulations with Density 9

Vertex Coloring (Density 9)

Random —e—
CMD
CMR ——

BitToss —a—

200 400 600 800 1000
number of nodes

A. Lagemann Self-Stabilizing WSN

convergence time (rounds)

Main Results Simulations with Density 9

Spanning Tree (Density 9)

600
500+
400+

Random —e—

CMD

300+ CMR ——

BitToss —=—

Synchronous ——
200
100+
Ol

200 400 600 800 1000

number of nodes

A. Lagemann Self-Stabilizing WSN

17

convergence time (rounds)

Main Results ~ Simulations with 400 Nodes

Maximal Independent Set (400 Nodes)

40+

30+

20+

10+

—=— BitToss
—— CMR
CMD

—e— Random

[I
r"’*\\\\\\\‘."ﬂ"/’ﬂﬂﬂ#ﬂﬂ_‘——#—__‘

[Sag

10 15 20 i

density M

A. Lagemann Self-Stabilizing WSN 18

convergence time (rounds)

Main Results ~ Simulations with 400 Nodes

Vertex Coloring (400 Nodes)

80
—=— BitToss
70l T CMR
CMD
601 —e— Random
50
40+
30
20+
10 - - - -
O T T T
0 5 10 15

node density

A. Lagemann Self-Stabilizing WSN

20

convergence time (rounds)

Main Results ~ Simulations with 400 Nodes

Spanning Tree (400 Nodes)

600

500+

400+

300+

200+

100+

CMD

Synchronous ——

Random —e—

CMR ——
BitToss —=—

10 15
node density

(S

A. Lagemann Self-Stabilizing WSN

20

Main Results Dependency of Node Density

Vertex Coloring (400 Nodes, Synchronous Version)

convergence time (rounds)

R —

Random (p=0.20)
Random (p=0.35)

Random (p=0.50)
Random (p=0.65)
Random (p=0.80)
Synchronous (2d)
Synchronous (d?)

5 10 15
node density

A. Lagemann Self-Stabilizing WSN

20

21

Summary

Summary

average convergence time much better than upper bounds from
literature

randomized transformation very good performance

with randomized transformation convergence time only depends on
convergence time of original algorithm

Outlook

e Use SelfWISE on real sensor hardware (e. g. TMoteSky or SunSpot).
e Determine the duration of a round under real conditions.

boc

ves

A. Lagemann Self-Stabilizing WSN 22

Thank You!

Questions ?

A. Lagemann Self-Stabilizing WSN

Appendix For Discussion

Basic Definitions

The state of node is described by its variables

Configuration ¢ of network is tuple of node states
Each node has strict local view upon network

e Node can read/write own state
e Node can read state of neighbors

Absence of faults is defined by a predicate P
A configuration is legitimate if it satisfies P
A transition ¢ — ¢’ is caused by executing an algorithm

An algorithm consists of rules of the following kind
guard; — statement;
guard, — statement,

A. Lagemann Self-Stabilizing WSN

24

Appendix For Discussion

Main Definition

Definition (Self-Stabilization)

Let £ be the set of all legitimate configurations relative to a predicate P.
A system is self-stabilizing with respect to P if:

1. If ce L and ¢ — ¢’ then ¢’ € L (closure property)

2. Starting from any configuration every execution reaches £ within a
finite number of transitions (convergence property)

\L Y\L

s

A. Lagemann Self-Stabilizing WSN 25

Appendix For Discussion

SelfWISE

Application

Platform

Neighborhood
Table

Local State

neighborChangeg

Framework

A. Lagemann Self-Stabilizing WSN

Algorithm-specific

	Outline
	Motivation
	Short Introduction to Self-Stabilization
	Self-Stabilization in WSN
	Main Results
	Simulations with Density 9
	Simulations with 400 Nodes
	Dependency of Node Density

	Summary
	Appendix
	Appendix
	

