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Motivation

Self-Stabilization

Definition (Dijkstra 1974)

We call the system “self-stabilizing” if and only if,
regardless of the initial state [. . . ] the system is
guaranteed to find itself in a legitimate state after a
finite number of moves.
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Motivation

Fault Model

�

�

• Transient faults

• Caused by environmental influences
• Wireless channel characteristics
• Cosmic rays
• . . .

• Lasting effect on state of the network
• Message loss or corruption
• Reset of nodes
• Corruption of memory

• Other faults like:
• Discharged nodes
• Broken links

• Can be modeled as transient faults
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Motivation

Benefits of Self-Stabilization

• Inherent non-masking fault tolerance

• Formally verifiable

• Proofs are based on simple model

• Transformation to realistic model possible

• While preserving self-stabilization property
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Short Introduction to Self-Stabilization

Maximal Independent Set
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Example (Maximal Independent Set)

public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false)

–> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) –>

in := false;
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Short Introduction to Self-Stabilization

Spanning Tree
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Example (Dolev 2000)
public map NodeID Platform.ID as ID;
public int dist;
public NodeID parent;

declare int minD := min(v.dist |Neighbors v);

rule R1:
ID = 0 and !(parent = null and dist = 0) –>

parent := null;
dist := 0;

rule R2:
ID != 0
and !(parent in (v.ID |Neighbors v : v.dist = minD)
and dist = minD + 1) –>

parent := choose(v.ID |Neighbors v : v.dist = minD);
dist := minD + 1;
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Short Introduction to Self-Stabilization

Vertex Coloring
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public map int Neighborhood.numOfNeigh as d;
public int c;

declare set int colors := (1:d);
declare bool

B1 := c in (v.c|Neighbors v) or c>d+1;
declare bool

B2 := colors = (v.c|Neighbors v);

rule R1:
B1 and B2 –>

c := d + 1;

rule R2:
B1 and !B2 –>

c := choose(colors \ (v.c|Neighbors v));
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Self-Stabilization in WSN

Execution Model – Central Daemon Scheduler
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• Central entity (called daemon) assumed

• Algorithm execution is divided into rounds

• Daemon selects exactly one node

• Selection is fair

• Basically a serialization
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Self-Stabilization in WSN

Execution Model – Synchronous
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• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!
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Self-Stabilization in WSN

Transformations for WSN
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• Communication Model
• Cached Sensornet Transformation (Herman 2003)

• Execution Model
• Strict transformations

• Deterministic conflict manager (Gradinariu, Tixeuil
2007)

• BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)

• Weak transformations
• Randomized conflict manager (Gradinariu, Tixeuil

2007)
• Randomized transformation(Turau, Weyer 2006)
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Self-Stabilization in WSN

Properties of Transformations

• Strict transformations
• Advantage: equivalent to central daemon
• Drawback: limited concurrent activity

• Weak transformations
• Advantage: allow for more concurrency
• Drawback: only probabilistic convergence
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Self-Stabilization in WSN

Major Concern: Convergence Time

• Represents responsiveness of algorithms

• High convergence time leads to low availability

• Major Question: Influence of transformations on convergence time?

• Do weak transformations reduce convergence time more than strict
ones?
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Self-Stabilization in WSN

Upper Bounds vs. Average

• Determining convergence time analytically yields upper bounds

• Analytical determination of average is prohibitive ⇒ large value space

• Only practical method: simulation

• Contribution: analysis of convergence time of three algorithms central
to WSN applications
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Main Results Simulations with Density 9

Maximal Independent Set (Density 9)
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Main Results Simulations with Density 9

Spanning Tree (Density 9)
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Main Results Simulations with 400 Nodes

Maximal Independent Set (400 Nodes)
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Main Results Simulations with 400 Nodes

Vertex Coloring (400 Nodes)
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Main Results Dependency of Node Density

Vertex Coloring (400 Nodes, Synchronous Version)
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Summary

Summary

• average convergence time much better than upper bounds from
literature

• randomized transformation very good performance

• with randomized transformation convergence time only depends on
convergence time of original algorithm

• Outlook
• Use SelfWISE on real sensor hardware (e. g. TMoteSky or SunSpot).
• Determine the duration of a round under real conditions.
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Summary

Thank You!

Questions ?
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Appendix For Discussion

Basic Definitions

• The state of node is described by its variables

• Configuration c of network is tuple of node states

• Each node has strict local view upon network
• Node can read/write own state
• Node can read state of neighbors

• Absence of faults is defined by a predicate P
• A configuration is legitimate if it satisfies P
• A transition c → c ′ is caused by executing an algorithm

• An algorithm consists of rules of the following kind
guard1 −→ statement1
guard2 −→ statement2
. . .
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Appendix For Discussion

Main Definition

Definition (Self-Stabilization)

Let L be the set of all legitimate configurations relative to a predicate P.
A system is self-stabilizing with respect to P if:

1. If c ∈ L and c → c ′ then c ′ ∈ L (closure property)

2. Starting from any configuration every execution reaches L within a
finite number of transitions (convergence property)

L
Σ\L

L
Σ\L

	Closure

	Convergence
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Appendix For Discussion

SelfWISE
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