
Programming Wireless Sensor Networks in a
Self-Stabilizing Style

C. Weyer1 V. Turau1 A. Lagemann2 J. Nolte2

1Institute of Telematics
Hamburg University of Technology

2Distributed Systems/Operating Systems
Brandenburg University of Technology Cottbus

The Third International Conference on Sensor Technologies and
Applications, 2009

A. Lagemann Self-Stabilizing WSN 1



Outline

Outline

Motivation

Short Introduction to Self-Stabilization

Self-Stabilization in WSN

Main Results

A. Lagemann Self-Stabilizing WSN 2



Motivation

Self-Stabilization

Definition (Dijkstra 1974)

We call the system “self-stabilizing” if and only if,
regardless of the initial state [. . . ] the system is
guaranteed to find itself in a legitimate state after a
finite number of moves.

A. Lagemann Self-Stabilizing WSN 3



Motivation

Fault Model

�

�

• Transient faults

• Caused by environmental influences
• Wireless channel characteristics
• Cosmic rays
• . . .

• Lasting effect on state of the network
• Message loss or corruption
• Reset of nodes
• Corruption of memory

• Other faults like:
• Discharged nodes
• Broken links

• Can be modeled as transient faults

A. Lagemann Self-Stabilizing WSN 4



Motivation

Fault Model

�

�

��

• Transient faults

• Caused by environmental influences
• Wireless channel characteristics
• Cosmic rays
• . . .

• Lasting effect on state of the network
• Message loss or corruption
• Reset of nodes
• Corruption of memory

• Other faults like:
• Discharged nodes
• Broken links

• Can be modeled as transient faults

A. Lagemann Self-Stabilizing WSN 4



Motivation

Benefits of Self-Stabilization

• Inherent non-masking fault tolerance

• Formally verifiable

• Proofs are based on simple model

• Transformation to realistic model possible

• While preserving self-stabilization property

A. Lagemann Self-Stabilizing WSN 5



Short Introduction to Self-Stabilization

Maximal Independent Set

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

Example (Maximal Independent Set)

public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false)

–> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) –>

in := false;

A. Lagemann Self-Stabilizing WSN 6



Short Introduction to Self-Stabilization

Maximal Independent Set

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

Example (Maximal Independent Set)

public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false)

–> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) –>

in := false;

A. Lagemann Self-Stabilizing WSN 6



Short Introduction to Self-Stabilization

Maximal Independent Set

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

Example (Maximal Independent Set)

public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false)

–> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) –>

in := false;

A. Lagemann Self-Stabilizing WSN 6



Short Introduction to Self-Stabilization

Spanning Tree

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

0

1

1 2

2
2 3

3

3

4

5
4

Example (Dolev 2000)
public map NodeID Platform.ID as ID;
public int dist;
public NodeID parent;

declare int minD := min(v.dist |Neighbors v);

rule R1:
ID = 0 and !(parent = null and dist = 0) –>

parent := null;
dist := 0;

rule R2:
ID != 0
and !(parent in (v.ID |Neighbors v : v.dist = minD)
and dist = minD + 1) –>

parent := choose(v.ID |Neighbors v : v.dist = minD);
dist := minD + 1;

A. Lagemann Self-Stabilizing WSN 7



Short Introduction to Self-Stabilization

Vertex Coloring

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

public map int Neighborhood.numOfNeigh as d;
public int c;

declare set int colors := (1:d);
declare bool

B1 := c in (v.c|Neighbors v) or c>d+1;
declare bool

B2 := colors = (v.c|Neighbors v);

rule R1:
B1 and B2 –>

c := d + 1;

rule R2:
B1 and !B2 –>

c := choose(colors \ (v.c|Neighbors v));

A. Lagemann Self-Stabilizing WSN 8



Self-Stabilization in WSN

Execution Model – Central Daemon Scheduler

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Central entity (called daemon) assumed

• Algorithm execution is divided into rounds

• Daemon selects exactly one node

• Selection is fair

• Basically a serialization

A. Lagemann Self-Stabilizing WSN 9



Self-Stabilization in WSN

Execution Model – Central Daemon Scheduler

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Central entity (called daemon) assumed

• Algorithm execution is divided into rounds

• Daemon selects exactly one node

• Selection is fair

• Basically a serialization

A. Lagemann Self-Stabilizing WSN 9



Self-Stabilization in WSN

Execution Model – Central Daemon Scheduler

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Central entity (called daemon) assumed

• Algorithm execution is divided into rounds

• Daemon selects exactly one node

• Selection is fair

• Basically a serialization

A. Lagemann Self-Stabilizing WSN 9



Self-Stabilization in WSN

Execution Model – Central Daemon Scheduler

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Central entity (called daemon) assumed

• Algorithm execution is divided into rounds

• Daemon selects exactly one node

• Selection is fair

• Basically a serialization

A. Lagemann Self-Stabilizing WSN 9



Self-Stabilization in WSN

Execution Model – Central Daemon Scheduler

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Central entity (called daemon) assumed

• Algorithm execution is divided into rounds

• Daemon selects exactly one node

• Selection is fair

• Basically a serialization

A. Lagemann Self-Stabilizing WSN 9



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Execution Model – Synchronous

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Algorithm execution is divided into rounds

• Every enabled node is automatically activated

• Is not equivalent to central daemon model!

A. Lagemann Self-Stabilizing WSN 10



Self-Stabilization in WSN

Transformations for WSN

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Communication Model
• Cached Sensornet Transformation (Herman 2003)

• Execution Model
• Strict transformations

• Deterministic conflict manager (Gradinariu, Tixeuil
2007)

• BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)

• Weak transformations
• Randomized conflict manager (Gradinariu, Tixeuil

2007)
• Randomized transformation(Turau, Weyer 2006)

A. Lagemann Self-Stabilizing WSN 11



Self-Stabilization in WSN

Transformations for WSN

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Communication Model
• Cached Sensornet Transformation (Herman 2003)

• Execution Model
• Strict transformations

• Deterministic conflict manager (Gradinariu, Tixeuil
2007)

• BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)

• Weak transformations
• Randomized conflict manager (Gradinariu, Tixeuil

2007)
• Randomized transformation(Turau, Weyer 2006)

A. Lagemann Self-Stabilizing WSN 11



Self-Stabilization in WSN

Transformations for WSN

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Communication Model
• Cached Sensornet Transformation (Herman 2003)

• Execution Model
• Strict transformations

• Deterministic conflict manager (Gradinariu, Tixeuil
2007)

• BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)

• Weak transformations
• Randomized conflict manager (Gradinariu, Tixeuil

2007)
• Randomized transformation(Turau, Weyer 2006)

A. Lagemann Self-Stabilizing WSN 11



Self-Stabilization in WSN

Transformations for WSN

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Communication Model
• Cached Sensornet Transformation (Herman 2003)

• Execution Model
• Strict transformations

• Deterministic conflict manager (Gradinariu, Tixeuil
2007)

• BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)

• Weak transformations
• Randomized conflict manager (Gradinariu, Tixeuil

2007)
• Randomized transformation(Turau, Weyer 2006)

A. Lagemann Self-Stabilizing WSN 11



Self-Stabilization in WSN

Transformations for WSN

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4

v5
v6

v7

v8

v9

v10
v11

• Communication Model
• Cached Sensornet Transformation (Herman 2003)

• Execution Model
• Strict transformations

• Deterministic conflict manager (Gradinariu, Tixeuil
2007)

• BitToss (Goddard, Hedetniemi, Jacobs, Srimani 2008)

• Weak transformations
• Randomized conflict manager (Gradinariu, Tixeuil

2007)
• Randomized transformation(Turau, Weyer 2006)

A. Lagemann Self-Stabilizing WSN 11



Self-Stabilization in WSN

Properties of Transformations

• Strict transformations
• Advantage: equivalent to central daemon
• Drawback: limited concurrent activity

• Weak transformations
• Advantage: allow for more concurrency
• Drawback: only probabilistic convergence

A. Lagemann Self-Stabilizing WSN 12



Self-Stabilization in WSN

Major Concern: Convergence Time

• Represents responsiveness of algorithms

• High convergence time leads to low availability

• Major Question: Influence of transformations on convergence time?

• Do weak transformations reduce convergence time more than strict
ones?

A. Lagemann Self-Stabilizing WSN 13



Self-Stabilization in WSN

Upper Bounds vs. Average

• Determining convergence time analytically yields upper bounds

• Analytical determination of average is prohibitive ⇒ large value space

• Only practical method: simulation

• Contribution: analysis of convergence time of three algorithms central
to WSN applications

A. Lagemann Self-Stabilizing WSN 14



Main Results Simulations with Density 9

Maximal Independent Set (Density 9)

0

10

20

30

40

50

100 200 300 400 500 600 700 800 900 1000

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

number of nodes

Random
CMD
CMR
BitToss

A. Lagemann Self-Stabilizing WSN 15



Main Results Simulations with Density 9

Vertex Coloring (Density 9)

0

10

20

30

40

50

60

70

80

200 400 600 800 1000

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

number of nodes

Random
CMD
CMR

BitToss

A. Lagemann Self-Stabilizing WSN 16



Main Results Simulations with Density 9

Spanning Tree (Density 9)

0

100

200

300

400

500

600

200 400 600 800 1000

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

number of nodes

Random
CMD
CMR

BitToss
Synchronous

A. Lagemann Self-Stabilizing WSN 17



Main Results Simulations with 400 Nodes

Maximal Independent Set (400 Nodes)

0

10

20

30

40

50

0 5 10 15 20

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

density

Random
CMD
CMR
BitToss

A. Lagemann Self-Stabilizing WSN 18



Main Results Simulations with 400 Nodes

Vertex Coloring (400 Nodes)

0

10

20

30

40

50

60

70

80

0 5 10 15 20

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

node density

Random
CMD
CMR
BitToss

A. Lagemann Self-Stabilizing WSN 19



Main Results Simulations with 400 Nodes

Spanning Tree (400 Nodes)

0

100

200

300

400

500

600

0 5 10 15 20

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

node density

Random
CMD
CMR

BitToss
Synchronous

A. Lagemann Self-Stabilizing WSN 20



Main Results Dependency of Node Density

Vertex Coloring (400 Nodes, Synchronous Version)

0

5

10

15

20

25

30

0 5 10 15 20

co
nv

er
ge

nc
e

tim
e

(r
ou

nd
s)

node density

Random (p=0.20)
Random (p=0.35)
Random (p=0.50)
Random (p=0.65)
Random (p=0.80)
Synchronous (2d)
Synchronous (d2)

A. Lagemann Self-Stabilizing WSN 21



Summary

Summary

• average convergence time much better than upper bounds from
literature

• randomized transformation very good performance

• with randomized transformation convergence time only depends on
convergence time of original algorithm

• Outlook
• Use SelfWISE on real sensor hardware (e. g. TMoteSky or SunSpot).
• Determine the duration of a round under real conditions.

A. Lagemann Self-Stabilizing WSN 22



Summary

Thank You!

Questions ?

A. Lagemann Self-Stabilizing WSN 23



Appendix For Discussion

Basic Definitions

• The state of node is described by its variables

• Configuration c of network is tuple of node states

• Each node has strict local view upon network
• Node can read/write own state
• Node can read state of neighbors

• Absence of faults is defined by a predicate P
• A configuration is legitimate if it satisfies P
• A transition c → c ′ is caused by executing an algorithm

• An algorithm consists of rules of the following kind
guard1 −→ statement1
guard2 −→ statement2
. . .

A. Lagemann Self-Stabilizing WSN 24



Appendix For Discussion

Main Definition

Definition (Self-Stabilization)

Let L be the set of all legitimate configurations relative to a predicate P.
A system is self-stabilizing with respect to P if:

1. If c ∈ L and c → c ′ then c ′ ∈ L (closure property)

2. Starting from any configuration every execution reaches L within a
finite number of transitions (convergence property)

L
Σ\L

L
Σ\L

	Closure

	Convergence

A. Lagemann Self-Stabilizing WSN 25



Appendix For Discussion

SelfWISE

timer

stateChange query

send

receive

update

neighborChanged stateChanged
check

evaluate

execute

encode
decode

Framework

P
la

tfo
rm send

query

receive

Application

Algorithm−specific 

Controller

Neighborhood

RuleEngine

N
ei

gh
bo

rh
oo

d 
M

an
ag

er

Statements

Guards

En−/Decode

S
ta

te
 M

an
ag

er

Sanity Check

Local State

Table

A. Lagemann Self-Stabilizing WSN 26


	Outline
	Motivation
	Short Introduction to Self-Stabilization
	Self-Stabilization in WSN
	Main Results
	Simulations with Density 9
	Simulations with 400 Nodes
	Dependency of Node Density

	Summary
	Appendix
	Appendix
	



