SelfWISE: A Framework for
Developing Self-Stabilizing
Algorithms

Christoph Weyer and Volker Turau

Fachtagung ,Kommunikation in Verteilten Systemen*” (KiVS’09)

Institute of Telematics U
Hamburg University of Technology T H H

_Mativaton
Self-Stabilization — A Child’s Play?

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

_Mativaton
Fault Model

¢\ \ B Transient faults
Ng” B Caused by environmental influences

¢ Wireless channel characteristics
¢ Cosmic rays

»
a__& . .
/

\ B | asting effect on state of the network
& ¢ Message loss or corruption
\& ¢ Reset of nodes

¢ Corruption of memory

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

_Mativaton
Fault Model

B Transient faults
B Caused by environmental influences

¢ Wireless channel characteristics
¢ Cosmic rays
* .

B | asting effect on state of the network

¢ Message loss or corruption
¢ Reset of nodes
¢ Corruption of memory

°

B Other faults like:

¢ Depleted nodes
¢ Broken links

B Can be modeled as transient faults

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Introduction into Self-Stabilization

Self-Stabilization

resing 1 8 satin proce

e ek oFTobusnes o merly s an g pob.

e, flls autide thescop o i arie It coul be of

clchance on o seale raning from & worldwide petwork

{o common bus contol. (1 have been ol .
S Solution shown below wes used 4 few weeks afte i
o ""‘;"‘"'”‘“““‘ covery in a sysiem where two resource:-sharing com-
QperatingSysers ____________putes were coupled via a rather primitivo channel
Self-stabilizing Systems in dlon wich ey b 0 sragetee oopestion)
Spite of Distributed Control ¥ e

sz Definition (Dijkstra 1974)

Key Words and P
sef-sabiliza

dprocessing, networks, boolean function is tru

i, s We call the system “self-stabilizing” if and
S only if, regardless of the initial state [...] the
mnanamnens 2imis gystem is guaranteed to find itself in a
w”‘“mm e legitimate state after a finite number of

e
o ooy e 0 [TIOVES.
the current system at least one legitimate
must be recorded in variables distributed over mmw v
e e s o
o A e s o
s bt o o A
i oy i s o

“The synchronization task between loosely coupled
e sequenial pocesss (s can be isingushd i,
for instance, operating systems) can

i he relation vt syiem i i legiimate stie i
variant. As a result, each individual process sicp that

gnlum«d o find T in 3 gt after
finite number of moves, For more than a year—at least
question

whether nontrivial (¢.g. al states legitimate is consid-
ered trivial) self-sabilizing systems could exist. It is
ot dircetly obvious whether the local moves can assure
d satisfoction of such a global cri
terion; the nondeterminacy as cmbodied by the daemon
s an added complication. The question 3 sett
each of the folloving three constructs. For brevity's
sake most of the heuristes that led me to find them,

s left as an exercse for the reader” (For the cyclic

o Commuicaions Novebe 1874
o Voume 17
the Ach Narbr 1

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Introduction into Self-Stabilization

Basic Definitions

B The state of node is described by its variables

B Configuration ¢ of network is tuple of node states
B Each node has strict local view upon network

¢ Node can read/write own state
¢ Node can read state of neighbors

B Absence of faults is defined by a predicate P
B A configuration is legitimate if it satisfies P
B A transition ¢ — ¢’ is caused by executing an algorithm

B An algorithm consists of rules of the following kind
guard; — statement
guard> — statement,

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Introduction into Self-Stabilization

Main Definition

Definition (Self-Stabilization)

Let £ be the set of all legitimate configurations relative to a
predicate P. A system is self-stabilizing with respect to P if:

1. If c € £ and ¢ — ¢ then ¢’ € L (closure property)

2. Starting from any configuration every execution reaches £
within a finite number of transitions (convergence property)

) T

Chnstoph Weyer; Framework for Developing Self-Stabilizing Algorithms

Introduction into Self-Stabilization

Spanning Tree

Example (Dolev 2000)
minNei(w,v) = w € N(v)AVx € N(v) : w.dist < x.dist
minDist(v) = min{w.dist | w € N(v)}

Root node
— (parent = null A dist =0) —
parent := null
dist :=0
Other node
— (minNei(parent, v) A dist = minDist(v) +1) —
choose w € N(v) with minNei(w, v)

parent := w
dist := minDist(v) + 1

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Adapting to Wireless Networks

B Algorithms defined for abstract models
4 Shared memory (node state exchange)
¢ Central Daemon (serial execution)
B Not suitable for wireless networks
B Transformations preserving self-stabilizing
B Existing transformations

¢ Each node broadcasts its state
¢ Nodes cache state of each neighbor
¢ Randomized execution to break symmetry

B Still open research area

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Next Part

SelfWISE Framework

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Motivation for SelfWISE

L d L 4

°

e
-

oy
«F
&

@

L 4

B Need for simplifying the programming
¢ Hide low-level details
¢ Abstraction of accessing the wireless
channel
¢ Overcome limitation of resources
B Facilitate development of self-stabilizing
algorithms
¢ [ntegrated support for debugging and
evaluation
¢ Simulating behavior in different topologies

B Standard way for applying transformations
B Comparable statistics

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

_SeIWISE
SelfWISE - Language (I)

B Based on formal specification of algorithms
B Language is restricted to self-stabilizing algorithms

B Basic structure of an algorithm
algorithm name
variable declarations
macro definitions
rule name:

guard —-> statements

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

_SeIWISE
SelfWISE — Language ()

B Based on formal specification of algorithms
B Language is restricted to self-stabilizing algorithms

B Basic structure of an algorithm
algorithm name
variable declarations
macro definitions
rule name:

guard —-> statements
B Declaration of variables

¢ Basic data types (e.g., bool or int) are supported
public int dist;

¢ Special data types Node and NodeID
public Node parent;

¢ Mapping of platform specific elements
public map NodeID Platform.ID as ID;

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

_SeIWISE
SelfWISE - Language (ll)

B QOperations upon neighboring nodes
¢ Set of all neighbors (Neighbors)
¢ |terator over neighborhood (Neighbors v)
¢ Filtering neighborhood

(Neighbors v : v.dist = minD)

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

SSIWISE
SelfWISE - Language (ll)

B QOperations upon neighboring nodes
¢ Set of all neighbors (Neighbors)
¢ |terator over neighborhood (Neighbors v)
¢ Filtering neighborhood
(Neighbors v : v.dist = minD)
B Simple set operations
¢ Choose one element in set

choose (Neighbors v : v.dist = minD);
¢ Check if element is in set
parent in (Neighbors v : v.dist = minD);

¢ Get minimum, maximum or average of a set
min (v.dist | Neighbors v);

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

SSIWISE
SelfWISE - Language (ll)

B QOperations upon neighboring nodes
¢ Set of all neighbors (Neighbors)
¢ |terator over neighborhood (Neighbors v)
¢ Filtering neighborhood
(Neighbors v : v.dist = minD)
B Simple set operations
¢ Choose one element in set

choose (Neighbors v : v.dist = minD);
¢ Check if element is in set
parent in (Neighbors v : v.dist = minD);

¢ Get minimum, maximum or average of a set
min (v.dist | Neighbors v);
B Macro definition

declare int minD := min(v.dist | Neighbors v);

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Example: Spanning Tree

algorithm SpanningTree;

public map NodeID Platform.ID as ID;

public Node parent;

public int dist;

declare int minD := min(v.dist |Neighbors v);
rule R1:

ID = 0 and ! (parent = null and dist = 0) ->
parent :=null;

dist:=0;
rule R2:
ID != 0 and
! ((parent in (Neighbors v:v.dist=minD))
and (dist = minD + 1)) ->

parent :=choose (Neighbors v:v.dist=minD) ;
dist:=minD + 1;

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

SelfWISE — Compiler

generate B Create different components
””””””””” ¢ Separate each rule into guard and statement
4 |[nitialization and sanity checks
¢ Encoding and decoding for network
representation

B Must preserve self-stabilizing properties

Algorithm-specific Components

-

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

SelfWISE - Architecture

Application

query

Neighborhood
Table

Local State

Platform

neighborChangeg

Framework Algorithm-specific

stoph Weyer: Framework for Developing Self-Stal

_SeIWISE
SelfWISE - Visualization

& - Sevile v A x
Datei Ansichten
A Graph
4 Grap
[J stroke 4]
dist)

) color Konfig.
[Label Konfig.
[stroke Konfig.

parent

(J color Konfig.
[Label Konfig.

[color Konfig.

[Label Konfig.

| [_J stroke Konfig. ‘

] spannbaum

Hintergrundbild
Konfiguration speichern

Zoom

i i
L T AN
v Zoom zuriicksetzen

Play
34 a4 54 B84 74 B84 G4 104 114 124 134 144 154 164 174 184 194 204 214 224 234

stoph Weyer:

Current SelfWISE Implementations

B SelfWISE framework
¢ TU Hamburg-Harburg: TinyOS/TOSSIM
¢ BTU Cottbus: Reflex’OMNeT ++

B Implementation state

¢ Six different transformations
¢ Several algorithms

» spanning tree, vertex coloring, clustering, ...
¢ First comparisons of transformation performance

® Current focus

¢ Performance improvements by porting to ns2
¢ Integration of fault injection facility

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

Conclusion

B Realization preserves self-stabilization properties
B FrameworKk is suitable for limited memory
¢ Around 20 kB (ROM) and 110 Byte (RAM)

B SelfWISE helps the evaluation of self-stabilizing algorithms

Next steps
B |nvestigation of different transformations
B Using self-stabilization in a real deployment

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

SelfWISE: A Framework for
Developing Self-Stabilizing
Algorithms

Christoph Weyer and Volker Turau

Fachtagung ,Kommunikation in Verteilten Systemen*” (KiVS’09)

Institute of Telematics U
Hamburg University of Technology T H H

Example: Vertex Coloring

algorithm VertexColoring;

public map int Neighborhood.numOfNeigh as d;
public int c;
declare set int colors := (1:d);
declare bool

Bl := ¢ in (v.c|Neighbors v) or c>d+1;
declare bool

B2 := colors = (v.c|Neighbors v);

rule R1:
Bl and B2 ->
c :=d + 1;

rule R2:
Bl and !'B2 —>
c := choose(colors \ (v.c|Neighbors v));

Christoph Weyer: Framework for Developing Self-Stabilizing Algorithms

	
	Motivation
	Introduction into Self-Stabilization
	
	SelfWISE
	Conclusion
	
	Appendix

