
SelfWISE: A Framework for
Developing Self-Stabilizing

Algorithms
Christoph Weyer and Volker Turau

Fachtagung „Kommunikation in Verteilten Systemen“ (KiVS’09)

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology



MotivationMotivation

Self-Stabilization – A Child’s Play?

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 11



MotivationMotivation

Fault Model

�

�

� Transient faults
� Caused by environmental influences

� Wireless channel characteristics
� Cosmic rays
� . . .

� Lasting effect on state of the network
� Message loss or corruption
� Reset of nodes
� Corruption of memory

� Other faults like:
� Depleted nodes
� Broken links

� Can be modeled as transient faults

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 22



MotivationMotivation

Fault Model

�

�

��

� Transient faults
� Caused by environmental influences

� Wireless channel characteristics
� Cosmic rays
� . . .

� Lasting effect on state of the network
� Message loss or corruption
� Reset of nodes
� Corruption of memory

� Other faults like:
� Depleted nodes
� Broken links

� Can be modeled as transient faults

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 22



Introduction into Self-StabilizationIntroduction into Self-Stabilization

Self-Stabilization

Definition (Dijkstra 1974)
We call the system “self-stabilizing” if and
only if, regardless of the initial state [. . . ] the
system is guaranteed to find itself in a
legitimate state after a finite number of
moves.

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 33



Introduction into Self-StabilizationIntroduction into Self-Stabilization

Basic Definitions

� The state of node is described by its variables
� Configuration c of network is tuple of node states
� Each node has strict local view upon network

� Node can read/write own state
� Node can read state of neighbors

� Absence of faults is defined by a predicate 𝒫
� A configuration is legitimate if it satisfies 𝒫
� A transition c → c′ is caused by executing an algorithm
� An algorithm consists of rules of the following kind

guard1 −→ statement1
guard2 −→ statement2
. . .

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 44



Introduction into Self-StabilizationIntroduction into Self-Stabilization

Main Definition
Definition (Self-Stabilization)
Let ℒ be the set of all legitimate configurations relative to a
predicate 𝒫. A system is self-stabilizing with respect to 𝒫 if:

1. If c ∈ ℒ and c → c′ then c′ ∈ ℒ (closure property )
2. Starting from any configuration every execution reaches ℒ

within a finite number of transitions (convergence property )

L
Σ\L

L
Σ\L

	Closure

	Convergence

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 55



Introduction into Self-StabilizationIntroduction into Self-Stabilization

Spanning Tree

v0

v1

v2 v3

v4
v5

v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4
v5

v6

v7

v8

v9

v10
v11

0

1

1 2

2
2 3

3

3

4

5
4

Example (Dolev 2000)
minNei(w , v) ≡ w ∈ N(v)∧ ∀ x ∈ N(v) : w .dist ≤ x .dist
minDist(v) ≡ min{w .dist | w ∈ N(v)}

Root node
¬ (parent = null ∧ dist = 0) −→

parent := null
dist := 0

Other node
¬ (minNei(parent , v) ∧ dist = minDist(v) + 1) −→

choose w ∈ N(v) with minNei(w , v)
parent := w
dist := minDist(v) + 1

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 66



Introduction into Self-StabilizationIntroduction into Self-Stabilization

Adapting to Wireless Networks

??
� Algorithms defined for abstract models

� Shared memory (node state exchange)
� Central Daemon (serial execution)

� Not suitable for wireless networks
� Transformations preserving self-stabilizing
� Existing transformations

� Each node broadcasts its state
� Nodes cache state of each neighbor
� Randomized execution to break symmetry

� Still open research area

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 77



Next Part

SelfWISE Framework

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 88



SelfWISESelfWISE

Motivation for SelfWISE

� Need for simplifying the programming
� Hide low-level details
� Abstraction of accessing the wireless

channel
� Overcome limitation of resources

� Facilitate development of self-stabilizing
algorithms
� Integrated support for debugging and

evaluation
� Simulating behavior in different topologies

� Standard way for applying transformations
� Comparable statistics

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 99



SelfWISESelfWISE

SelfWISE – Language (I)

� Based on formal specification of algorithms
� Language is restricted to self-stabilizing algorithms
� Basic structure of an algorithm

algorithm name
variable declarations
macro definitions

rule name:

guard -> statements

� Declaration of variables
� Basic data types (e.g., bool or int) are supported

public int dist;
� Special data types Node and NodeID

public Node parent;
� Mapping of platform specific elements

public map NodeID Platform.ID as ID;

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1010



SelfWISESelfWISE

SelfWISE – Language (I)

� Based on formal specification of algorithms
� Language is restricted to self-stabilizing algorithms
� Basic structure of an algorithm

algorithm name
variable declarations
macro definitions

rule name:

guard -> statements

� Declaration of variables
� Basic data types (e.g., bool or int) are supported

public int dist;
� Special data types Node and NodeID

public Node parent;
� Mapping of platform specific elements

public map NodeID Platform.ID as ID;

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1010



SelfWISESelfWISE

SelfWISE – Language (II)

� Operations upon neighboring nodes
� Set of all neighbors (Neighbors)
� Iterator over neighborhood (Neighbors v)
� Filtering neighborhood

(Neighbors v : v.dist = minD)

� Simple set operations
� Choose one element in set

choose(Neighbors v : v.dist = minD);
� Check if element is in set

parent in (Neighbors v : v.dist = minD);
� Get minimum, maximum or average of a set

min(v.dist | Neighbors v);

� Macro definition
declare int minD := min(v.dist | Neighbors v);

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1111



SelfWISESelfWISE

SelfWISE – Language (II)

� Operations upon neighboring nodes
� Set of all neighbors (Neighbors)
� Iterator over neighborhood (Neighbors v)
� Filtering neighborhood

(Neighbors v : v.dist = minD)

� Simple set operations
� Choose one element in set

choose(Neighbors v : v.dist = minD);
� Check if element is in set

parent in (Neighbors v : v.dist = minD);
� Get minimum, maximum or average of a set

min(v.dist | Neighbors v);

� Macro definition
declare int minD := min(v.dist | Neighbors v);

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1111



SelfWISESelfWISE

SelfWISE – Language (II)

� Operations upon neighboring nodes
� Set of all neighbors (Neighbors)
� Iterator over neighborhood (Neighbors v)
� Filtering neighborhood

(Neighbors v : v.dist = minD)

� Simple set operations
� Choose one element in set

choose(Neighbors v : v.dist = minD);
� Check if element is in set

parent in (Neighbors v : v.dist = minD);
� Get minimum, maximum or average of a set

min(v.dist | Neighbors v);

� Macro definition
declare int minD := min(v.dist | Neighbors v);

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1111



SelfWISESelfWISE

Example: Spanning Tree

v0

v1

v2 v3

v4
v5

v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4
v5

v6

v7

v8

v9

v10
v11

0

1

1 2

2
2 3

3

3

4

5
4

algorithm SpanningTree;

public map NodeID Platform.ID as ID;
public Node parent;
public int dist;

declare int minD := min(v.dist|Neighbors v);

rule R1:
ID = 0 and !(parent = null and dist = 0) ->

parent:=null;
dist:=0;

rule R2:
ID != 0 and
!((parent in (Neighbors v:v.dist=minD))
and (dist = minD + 1)) ->
parent:=choose(Neighbors v:v.dist=minD);
dist:=minD + 1;

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1212



SelfWISESelfWISE

SelfWISE – Compiler

generate

Compiler

Sanity Check

En−/Decode

Algorithm

A
lg

or
ith

m
−

sp
ec

ifi
c 

C
om

po
ne

nt
s

use

Statements

Guards

� Create different components
� Separate each rule into guard and statement
� Initialization and sanity checks
� Encoding and decoding for network

representation
� Must preserve self-stabilizing properties

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1313



SelfWISESelfWISE

SelfWISE – Architecture

timer

stateChange query

send

receive

update

neighborChanged stateChanged
check

evaluate

execute

encode
decode

Framework

P
la

tfo
rm send

query

receive

Application

Algorithm−specific 

Controller

Neighborhood

RuleEngine

N
ei

gh
bo

rh
oo

d 
M

an
ag

er

Statements

Guards

En−/Decode

S
ta

te
 M

an
ag

er

Sanity Check

Local State

Table

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1414



SelfWISESelfWISE

SelfWISE – Visualization

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1515



SelfWISESelfWISE

Current SelfWISE Implementations

� SelfWISE framework
� TU Hamburg-Harburg: TinyOS/TOSSIM
� BTU Cottbus: Reflex/OMNeT++

� Implementation state
� Six different transformations
� Several algorithms

I spanning tree, vertex coloring, clustering, . . .
� First comparisons of transformation performance

� Current focus
� Performance improvements by porting to ns2
� Integration of fault injection facility

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1616



ConclusionConclusion

Conclusion

� Realization preserves self-stabilization properties
� Framework is suitable for limited memory

� Around 20 kB (ROM) and 110 Byte (RAM)
� SelfWISE helps the evaluation of self-stabilizing algorithms

Next steps
� Investigation of different transformations
� Using self-stabilization in a real deployment

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1717



SelfWISE: A Framework for
Developing Self-Stabilizing

Algorithms
Christoph Weyer and Volker Turau

Fachtagung „Kommunikation in Verteilten Systemen“ (KiVS’09)

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology



Example: Vertex Coloring

v0

v1

v2 v3

v4
v5

v6

v7

v8

v9

v10
v11

v0

v1

v2 v3

v4
v5

v6

v7

v8

v9

v10
v11

algorithm VertexColoring;

public map int Neighborhood.numOfNeigh as d;
public int c;

declare set int colors := (1:d);
declare bool
B1 := c in (v.c|Neighbors v) or c>d+1;

declare bool
B2 := colors = (v.c|Neighbors v);

rule R1:
B1 and B2 ->

c := d + 1;

rule R2:
B1 and !B2 ->

c := choose(colors ∖ (v.c|Neighbors v));

Christoph Weyer Framework for Developing Self-Stabilizing AlgorithmsChristoph Weyer Framework for Developing Self-Stabilizing Algorithms 1818


	
	Motivation
	Introduction into Self-Stabilization
	
	SelfWISE
	Conclusion
	
	Appendix

