A Roadmap for Hardware and Software Support for Developing Energy-Efficient Sensor Networks

Christoph Weyer, Christian Renner, Volker Turau, and Hannes Frey

GI/ITG Fachgespräch "Sensornetze" (FGSN '09) 14. August 2009

Institute of Telematics TUHH Hamburg University of Technology

Development Support for WSNs

Problem:

- Debugging new implementations
 - $\rightarrow\,$ Logging of internal information
- Comparing existing implementations
 - → Extracting comparable metrics

Looking for: Development support tools

Solution: Automated approach

- Instrumentation & Evaluation
- Real Hardware & Testbed

Automated Development Support

Goals:

Extract information without any manual interventions

- Gather essential information about network state
 - State of nodes
 - Message flows within the network
- Small memory footprint and low runtime overhead

Preconditions:

- Coding conventions are required
- TinyOS provides some kind of conventions

Information Gathered by TinyAID

Call-chain logging

- Occurrence of events reflects change of node state e.g., TinyOS events Timer.fired
- Currently executed component Part of the C function name that is called
- Monitoring what components are turned on/off Tracing specific events, e.g., Radio.startDone
- Message logging
 - Sending and receiving a packet
 - Tracking of packets over multiple hops
- Adding timestamps to logged data

Instrumentation

Configuration of Call-Chain Logging

- -d /opt/tinyos-2.x/.*
- +f Test.nc
- +h fired
- +h booted

exclude everything in /opt/tinyos-2.x
include everything in file Test.nc
include all fired event handler
include all booted event handler

- Instrumentation code is inserted based on configuration
- Configuration includes (+) or exclude (-)
 - Directories (d)
 - Files (f)
 - Commands or Events (h)
- First match decides action
- If no match is found no instrumentation is inserted

Message Logging

- Multi-hop packet tracing
- Adding additional fields to each packet
 - Originating node
 - Unique sequence number for each node
- Information is inserted by calling Packet.clear()
- Trace: creating, sending, and receiving of packets

node	time [ms]	action	type	src	dest	origin	seqno
3	3520	С				3	42
3	3521	S	17	3	12	3	42
5	3524	С				5	14
5	3525	s	34	5	65535	5	14
12	3535	r	17	3	12	3	42
3	3520	С				3	43

Message Logging

- Multi-hop packet tracing
- Adding additional fields to each packet
 - Originating node
 - Unique sequence number for each node
- Information is inserted by calling Packet.clear()
- Trace: creating, sending, and receiving of packets

node		time [ms]	action	type	src	dest	origin	seqno
	3	3520	С				3	42
	3	3521	S	17	3	12	3	42
	5	3524	С				5	14
	5	3525	S	34	5	65535	5	14
	12	3535	r	17	3	12	3	42
	3	3520	С				3	43

Concept Evaluation: Packet Types

- Visualization of network activities based on packet types
- Identification of protocol execution

The Need for a Hardware Adapter

Goals:

- Run applications on real hardware
- Gather information provided by TinyAID → node *and* network state
- Low overhead
- Energy supply control

Solution:

- Design and build a hardware adapter
- Combine many adapters to form a testbed

Hardware Adapter Building Blocks

Measuring Current and Dynamic Power Supply

Requirements:

- Fine-grained, periodic sampling of current drawn by sensor node
- Precise measuring over several orders of magnitudes
 - Sleeping node: a few μA (10⁻⁶ A)
 - Radio active: some mA (10⁻³ A)
 - High load plus active sensors: up to 100 mA (10⁻¹ A)
- Dynamic power supply for energy-aware applications

Retrieving TinyAID-Generated Log Data

- Log as less as possible to avoid affecting the node's function
- Use I/O pins of µC
 - 8 bits for call-chain logging
 - 1 bit to indicate entering/leaving of functions
 - 7 bits to identify function
 - all zeros indicating that no data is available
 - Message logging requires one byte for each origin, sequence number, type, sender, (intended) receiver
- Additional data retrieved by hardware adapter e.g., time, local node, or energy consumption

Communicating Data

- Central management unit
- Exchange of data via Ethernet e.g., firmware images, configurations, log data
- I/O pin as switch to turn on/off logging

Hardware Prototype – The Trouble Child

Output Voltage Regulator:

- Considered two different, suitable voltage regulators
- Tested ability to reproduce sine and square wave with sampling rates between 50 Hz and 200 kHz
- Only one of the regulators is generally suitable, but it cannot drive a node under full load

Measuring Current:

- Considered various instrumentation amplifiers feeding a logarithmic amplifier
- No precise measuring possible over 5 orders of magnitude at 1 kHz

Conclusion

Where we are:

- TinyAID: valuable support for TinyOS programming
- Simple practicability on legacy source code
- Instant information about internal sequences
- Automated packet tracing
- Hardware support requires additional effort

And where we'll go:

- Design and build better suited hardware adapter
- Apply TinyAID to real hardware

A Roadmap for Hardware and Software Support for Developing Energy-Efficient Sensor Networks

Christoph Weyer, Christian Renner, Volker Turau, and Hannes Frey

GI/ITG Fachgespräch "Sensornetze" (FGSN '09) 14. August 2009

Institute of Telematics TUHH Hamburg University of Technology

Call-Chain Logging

Node ID	Time [ms]	Direction	Handler ID
5	1320	>	42
5	1322	>	36
5	1323	>	12
5	1324	<	12
5	1328	<	36
5	1333	<	42
3	1648	>	20
3	1649	<	20
7	1930	>	42
7	1931	<	42

Call-Chain Logging

No	ode ID	Time [ms]	Direction	Handler ID
	5	1320	>	42
	5	1322	>	36
	5	1323	>	12
	5	1324	<	12
	5	1328	<	36
	5	1333	<	42
	3	1648	>	20
	3	1649	<	20
	7	1930	>	42
	7	1931	<	42

Concept Evaluation: Event Tracing

node

25	A		~		1							L	×	~			~	
≤:) 24			\sim		1.								\sim	$\hat{}$		\sim	\sim	
24	٦			1-8	1		1-2				1		~	~~~~	X	~	- A.	
23	٦		· · · ·		1	<												
22	1		X-	×	+X-	+*	+- *	×	X	- *	X-	- X	- ×	X-		- ×	X	
21	1		- ×	×-	-×			×	- × -	×			X	X	- X	X-	-×	
20	1		X-		+×-			×-	X		-×	×-	X	×	-×	- ×	× -	
19	+		×		-×		×	×	- × -	×	×	- ×	×	- ×	×	X	- ×	
18	+		X-	- ×	×	×	:	-×	×	×		×	× *	×	X-	× •	× -	
17	+		\times	×	-×		- × -	×	- × -			×	×	×	×	- ×		
16	+		×	×	×		- ×-	×-	×	- ×	-×	- ×	×	×	×	- ×		
15	+		×	$ \times$	-×	×	- ×-	×	$\rightarrow \times \rightarrow$	-×	×-	$ \times -$	×			$\sim \sim \times \sim$	$ \times$	
14	+		× -		×		- ×	-×	×-		×	×	- × -	- ×	- ×	- ×	\sim \times \sim	
13	+		×	- ×	-×	- × -	+×	×	- ×		- ×	×	×	×	- ×	×	- ×	
12	+		X -	- ×	+×	- ×		×-	×	-×	×	×-	×	X	×	- × -	- ×	
11	+		X	×	- ×	- ×	(-×	×	- ×	×		- ×	- × -	× -	×-	×	-×	
10	+		× -	×-	×		- ×	-×	×		×			×		×	-×	
9	+		X		- × -	- ×-		×	×	- ×	-×	×-	- × -	- ×	×	×-	×	
8	+		× -		×	- ×			× -	×	×-	- ×	×	-×		×	- ×	
7	+		X	- ×	- × -				×		x		×	×-	×	×	×	
6	4	j	× -	-x	i×	:- ×-		-x	×-	×	-×	×-	- ×	× -	- ×	×	×	
5	4	j	X	i×	- ×-	-i×		- ×	×	×	×		×	×	-×	- ×	×-	
4	4	j	× -	i	i>	- ×	-i	ix		×-	× -	× -	×	- ×	×		×	
3	4		×		- ×-			×-	- ×		×	×		-×	×-	- ×	×	
2	4	- 1	× -	×	1		×-	-x	- ×	- ×	-x	- ×	×	×-	×-		X	
1	1		×	- ×		- ×	¥	- ×	×	×			×			×	×	
	L	t			+	+	1 ^	+ ^		\vdash	⊢ ^	<u> </u>	<u> </u>		⊢ <u>^</u>	<u> </u>	~	🗕 🕨 time
		4	0 4	41 4	12	43 4	44 4	5 4	6 4	7 4	8 4	9 5	0 5	1 5	2 5	3 5	4 5	5

Shortcomings of the random number generator in TOSSIM

Concept Evaluation: State Tracing

Visualization of program states over time

Concept Evaluation: Packet Flow

- Visualization of number of sent packets over a link
- Identifying routing path decisions

Concept Evaluation: Energy Consumption

- Energy consumption based on communication efforts
- Identification of hot-spots