
Mission Statement: Applying Self-Stabilization to
Wireless Sensor Networks

Andreas Lagemann, Jörg Nolte
Distributed Systems/Operating Systems

Brandenburg University of Technology Cottbus
Cottbus, Germany

Email: {ae,jon}@informatik.tu-cottbus.de

Christoph Weyer, Volker Turau
Institute of Telematics

Hamburg University of Technology
Hamburg, Germany

Email: {c.weyer, turau}@tu-harburg.de

Abstract—Long living and unattended deployments of wireless
sensor networks requires fault-tolerant solutions. Self-stabilizing
algorithms are providing these properties in an elegant and
verifiable way. Recently, a lot of research has been performed to
determine appropriate means to apply these promising technique
to wireless sensor networks. In this paper the current state of
the art in this field is given. Additionally, three major challenges
are presented for achieving self-stabilizing sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) are operating under inher-
ently instable conditions. The notoriously unreliable wireless
communication facilities and environmental influences lead
to highly dynamic conditions that in turn lead to frequent
communication topology changes and other disturbances. The
fact that WSNs usually are intended to run unattended for
several months or years necessitates facilities that handle
these dynamics in a self-acting manner. The concept of self-
stabilization, introduced by Dijkstra in 1974 [1], comprises
many properties that are helpful in this context. In fact a
self-stabilizing system has embedded mechanisms to react
to disturbances and faults in a self-controlled way. These
mechanisms provide for the ability of the system to move
from any faulty state to a safe one in bounded time. This
property is called convergence and is augmented by closure,
which additionally guarantees, that no move made by a self-
stabilizing algorithm may lead to a faulty state. For an existing
algorithm it can be shown formally, that it possesses both
properties and thus is self-stabilizing. Self-stabilization can be
regarded as a completely novel approach to fault-tolerance.
Instead of specifying faults that may occur and creating al-
gorithms that are robust against these particular faults, simply
the set of desired system states is specified and algorithms are
formulated such that these states are eventually reached after
a fault occurred. This kind of fault-tolerance is also called
non-masking fault tolerance, because faults are not (and need
not be) detected as such and thus no measures to mask their
effects can be taken.

In the following section we will introduce the concept
of self-stabilizing algorithms and their application in WSNs.
After that we will present three major challenges still to be
met for applying self-stabilizing algorithms to WSNs. Finally,
we will conclude by giving an outlook of work to be done.

II. SELF-STABILIZATION IN WSNS

Figure 1 shows a simple example for a self-stabilizing
algorithm: it constructs a maximal independent set (MIS) as
described in [2], which can be used as a basis for clustering.
The membership of a node in the independent set is indicated
by setting the variable in to true. Such an algorithm typically
consists of a set of rules, which in turn consist of a guard (left
of→) and a statement (right of →) that shall be executed when
the guard evaluates to true.

v0

v1

v2 v3

v4
v5

v6

v7

v8

v0

v1

v2 v3

v4
v5

v6

v7

v8

v.in = false ∧ ∀ w ∈ N(v) : (w.in = false)

→ v.in := true

v.in = true ∧ ∃ w ∈ N(v) : (w.in = true)

→ v.in := false

Fig. 1. Maximal Independent Set [2]

Obviously it is necessary to define the exact semantics of
these rules. There are two main questions that come to mind
when looking at the algorithm in Fig. 1. The first thing to
notice is, that the rules access variables of neighboring nodes.
For the formal model often a special shared memory model
is used. First of all the variables can be divided in public and
private ones. Private variables can solely be accessed by the
corresponding node. It is assumed, that each node can read
the public variables of its direct neighbors but only the owner
of a public variable can write it. To achieve this in WSNs,
it is mandatory to provide the nodes with a reasonably stable
view of their neighborhood. Therefore, this view has to hide
the continuous fluctuations of the wireless link’s quality from
the algorithm. Mahalle [3] is a neighborhood protocol that
achieves this and was developed especially for self-stabilizing
algorithms. When this view is established, nodes can exchange
the contents of their public variables on a regular basis with
their neighbors and maintain a cache for each neighbor. The
guards are then evaluated based on the cached values. This

47



communication model was introduced by Ted Herman [4] who
called it cached sensornet transformation.

The second question is: when are the guards evaluated and
the statements executed? First of all execution is assumed to
take place in rounds, which seems to imply a synchronous
system (which was indeed assumed at first) but the concept
of rounds can also be extended to asynchronous systems,
when the algorithm does not depend on knowledge about
these rounds. Many approaches of self-stabilizing algorithms
require, that no two neighboring nodes can execute a statement
concurrently. That greatly simplifies the algorithm analysis and
the proofs of the self-stabilizing property. The requirements are
embodied by an abstract entity called daemon. The so called
central daemon selects exactly one node per round and thus
trivially achieves mutual exclusive execution of neighbors.
This execution model is of course too restrictive to be applied
in a realistic environment. Therefore, a more flexible model,
the distributed daemon is introduced. Here in each round a
subset of size N is selected to make a step concurrently.
This model covers the central daemon (for N = 1) as well
as the synchronous model where all nodes execute in each
round (when N is set to the total number of nodes in the
network). A node is called enabled, if one of its guards
resolves to true. When an enabled node is selected, it executes
the corresponding statement.

Algorithms developed for a central daemon often do not
stabilize under a distributed or synchronous daemon due the
concurrent execution within the neighborhood. The MIS algo-
rithm depicted in Fig. 1 is an example of such an algorithm. To
solve this so called transformations have been proposed [4]–
[7]. They convert algorithms designed for such abstract models
into semantically equivalent algorithms that stabilize under
weaker assumptions.

III. MAJOR CHALLENGES

Applying self-stabilizing algorithms in the field of WSNs
to increase the fault-tolerance is currently an active research
area [4], [7]–[11]. In this section we will present the most es-
sential challenges for utilizing the benefits of self-stabilization
for WSNs.

A. Appropriate Programming Abstractions

One major concern is an appropriate programming abstrac-
tion that preserves the simplicity of the algorithms as well as
the self-stabilizing properties. It is thereby very desirable to
keep the algorithm description language independent of WSN
specific details like the model transformation applied or the
neighborhood protocol used. One major step in this direction
is SelfWISE a programming abstraction designed for applying
self-stabilizing algorithm in WSNs. It consists of the SelfWISE
framework that is the runtime environment for executing self-
stabilizing algorithm and a language to express those algo-
rithms. Figure 2 depicts the MIS algorithm presented above
in the SelfWISE language. For a more complete description
of the SelfWISE framework and language see [10].

SelfWISE allows the application of self-stabilizing algo-
rithms to WSNs by generating appropriate C/C++ code that
can be run in a framework. Additionally, transformations
that allow to conserve the self-stabilizing properties when
communication takes place in a wireless ad-hoc network can
be integrated. To fully guarantee preservation of the self-
stabilizing properties it will be also necessary to investigate
the influence of the compiler and the operating system. Here
the development of techniques that preserve self-stabilization
is mandatory for accomplishing the goal of completely fault-
tolerant WSNs.

Self-stabilizing algorithms use some notion of neighbor-
hood, which is not always merely the 1-hop communica-
tion neighborhood but may also span 2-hop communication
distance or be defined by other means than communication
neighborhood. A programming language for self-stabilizing
algorithms must provide appropriate abstractions for such
neighborhood notions. These abstraction must be designed
such that they allow for efficient implementations with a low
memory footprint. One could imagine communication models
that provide access to the state of nodes in such alternative
neighborhoods. The transformation that implements such an
abstraction has to make a trade off between flexibility and
energy consumption. To give developers control over this
crucial performance aspects the programming abstraction must
provide means to specify the desired trade off.

B. Efficient and Scalable Model Transformations

When concerning the communication model, the aforemen-
tioned cached sensornet transformation from Herman is widely
regarded as appropriate for WSNs. For the execution model
several proposals exist for transforming algorithms written for
the central daemon such that they can be run in WSNs while
self-stabilization is preserved. Transformations of the execu-
tion model ensure the exclusive execution within each neigh-
borhood under the distributed or synchronous daemon. The
idea behind these transformations is to break the symmetry by
using unique identifiers or randomization. A strict transforma-
tion converts the algorithms in such a way that the execution
of the resulting algorithms is equivalent to an execution under
the central daemon. An algorithm A is transformed into A′

such that only one node in each neighborhood performs a
move of A concurrently. Examples for strict transformations
are the deterministic conflict manager (CMD) [5] that uses
unique node identifiers and BitToss [6]. The latter elects a
neighbor by a Bernoulli trial until solely a single node is
enabled. The main drawback of these strict transformations is
the limited concurrent activity, exactly one node within each

algorithm MaximalIndependentSet;
public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false) −> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) −> in := false;

Fig. 2. Maximal Independent Set [2]

48



neighborhood executes its statement. Often this limitation is
too restrictive and a higher degree of concurrency is needed.
Algorithms converted by a weak transformation produce an
execution that may not be possible under a central daemon.
The reason for this is the fact that nodes may perform a
move within a neighborhood concurrently. The idea is that
potential deceptive statement executions are resolved after
some time, but with the advantage of a faster convergence.
Examples for weak transformations are the randomized con-
flict manager (CMR) [5] and the randomized transformation
introduced by Turau and Weyer [7], which both lead to a
probabilistic convergence. The latter reference also proposed
a transformation that is even self-stabilizing in the case of
occasional message losses.

A good metric for the quality of transformations is the
average convergence time they yield for different algorithms. It
could be shown that the transformation from [7] performs best
with respect to average convergence time [12]. Nevertheless,
all transformations regarded in [12] rather impose an abstract
model on top of a WSN instead of integrating the algorithm
more tightly. A rewarding goal would be a lightweight trans-
formation which utilizes the characteristics of the wireless
channel to increase efficiency.

C. Application Field of Self-Stabilization in WSNs

Another major concern is to find fields of application
in WSNs where the benefits of self-stabilization show to
advantage best. The fault tolerance added by self-stabilizing
algorithms is the very first property that comes to mind.
This alone is not necessarily a sufficient argument for their
use, because the gain in fault tolerance must be carefully
compared with other approaches to decide if self-stabilization
is the method of choice. Methods for assessing the fault
tolerance measure of self-stabilization are currently studied
and developed (e. g., see [13]).

But there is more to self-stabilization than fault tolerance.
The inherent flexibility of self-stabilizing algorithms seems
to be especially well suited to deal with the dynamics of the
wireless medium. Due to this the network topology is bound to
the changes over time. The knowledge of the network topology
is often needed to achieve efficient message transport. The
efficiency suffers greatly from topology changes, since with
each change the topology must be built newly. Here self-
stabilizing algorithms could help to maintain the topology
information even in the presence of changes. It is the inherent
locality of these algorithms (only operating on their own and
their neighbor’s states) that promises fast adaptation.

Another interesting aspect is the convergence property of
self-stabilizing algorithms. It is shared by other lightweight
approaches that aim for achieving scalability. For instance the
concept of eventual consistency is a lightweight consistency
model first introduced for distributed databases. It does not
give guarantees about consistency of copies at every time
instance but merely assures that all copies will eventually be
consistent, when the time between updates is long enough

again. As Gustavsson and Andler point out [14] this approach
has several similarities to self-stabilization.

IV. CONCLUSION

Application scenarios for wireless sensor networks require
long living and unattended deployments. These characteristics
necessitate fault-tolerant solutions. Self-stabilizing algorithms
are an elegant way to develop such applications. We presented
the major challenges for the near future, that need to be tackled
rendering their utilization in real sensor networks useful. A
suitable programming abstraction is vital for allowing a wide
range of developers to create self-stabilizing applications.
More efficient and lightweight transformations are needed for
integrating those algorithms seamlessly into WSNs. Exploiting
self-stabilizing properties in other fields than fault tolerance,
for achieving a benefit from this elegant paradigm, is another
important issue. The greatest challenge will be the integration
of self-stabilization into real applications. Therefore, new ideas
and experiences with self-stabilizing algorithms in WSNs are
tremendously important.

REFERENCES

[1] E. W. Dijkstra, “Self-stabilizing Systems in Spite of Distributed Con-
trol,” Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani,
“Self-Stabilizing Algorithms for Minimal Dominating Sets and Maxi-
mal Independent Sets,” Computers and Mathematics with Applications,
vol. 46, no. 5–6, pp. 805–811, Sep. 2003.

[3] C. Weyer, S. Unterschütz, and V. Turau, “Connectivity-aware Neigh-
borhood Management Protocol in Wireless Sensor Networks,” in Proc.
7th GI/ITG KuVS Fachgespräch ”Drahtlose Sensornetze” (FGSN’08),
Berlin, Germany, Jul. 2008.

[4] T. Herman, “Models of Self-Stabilization and Sensor Networks,” in Proc.
5th Int. WS on Distr. Comp. (IWDC’03), Dec. 2003.

[5] M. Gradinariu and S. Tixeuil, “Conflict Managers for Self-Stabilization
without Fairness Assumption,” in Proc. 27th Int. Conf. on Distr. Comp.
Systems (ICDCS’07), Jun. 2007.

[6] W. Goddard, S. Hedetniemi, D. Jacobs, and P. K. Srimani, “Anonymous
Daemon Conversion in Self-stabilizing Algorithms by Randomization in
Constant Space,” in Proc. 9th Int. Conf. on Distr. Comp. and Networking
(ICDCN’08), Jan. 2008.

[7] V. Turau and C. Weyer, “Fault Tolerance in Wireless Sensor Networks
through Self-Stabilization,” Int. Journal of Communication Networks
and Distr. Syst., vol. 2, no. 1, pp. 78–98, 2009.

[8] H. Kakugawa and T. Masuzawa, “Convergence Time Analysis of Self-
Stabilizing Algorithms in Wireless Sensor Networks with Unreliable
Links,” in Proc. 10th Int. Symposium on Stabilization, Safety, and
Security of Distr. Syst. (SSS’08), Nov. 2008.

[9] N. Mitton, E. Fleury, I. Lassous, and B. Sericola, “Fast Convergence in
Self-Stabilizing Wireless Networks,” in Proc. 12th Int. Conf. on Parallel
and Distr. Syst. (ICPADS’06), Jul. 2006.

[10] C. Weyer and V. Turau, “SelfWISE: A Framework for Developing Self-
Stabilizing Algorithms,” in Proc. 16th ITG/GI - Fachtg. Komm. in Vert.
Syst. (KiVS’09), Mar. 2009.

[11] Y. Yamauchi, T. Itou, G. Nishikawa, F. Ooshita, H. Kakugawa, and
T. Masuzawa, “Clustering Algorithm for Mobile Ad-Hoc Networks to
Improve the Stability of Clusters,” in Proc. IASTED Int. Conf. on Sensor
Networks (SN’08), Sep. 2008.

[12] C. Weyer, V. Turau, A. Lagemann, and J. Nolte, “Programming Wireless
Sensor Networks in a Self-Stabilizing Style,” in Proc. Third Int. Conf. on
Sensor Technologies and Applications (SENSORCOMM’09), Jun. 2009.

[13] N. Müllner, A. Dhama, and O. Theel, “Derivation of Fault Tolerance
Measures of Self-Stabilizing Algorithms by Simulation,” in Proc. 41st
Annual Simulation Symposium (ANSS’08), April 2008.

[14] S. Gustavsson and S. F. Andler, “Self-Stabilization and Eventual Con-
sistency in Replicated Real-Time Databases,” in Proc. First Workshop
On Self-Healing Systems (WOSS’02), Nov. 2002.

49


