Aggregating Sensor Data from Overlapping
Multi-Hop Network Neighborhoods: Push or Pull?

Kay Romer
ETH Zurich, Switzerland
roemer @inf.ethz.ch

Abstract— Network neighborhoods are a key communication
abstraction in sensor networks, allowing sensor nodes to collect
and aggregate sensor data from nearby other nodes. In many
applications, multi-hop neighborhoods of several nodes overlap,
such that nodes participate in many neighborhoods, having to
contribute their data items to all containing neighborhoods. We
consider two orthogonal approaches to efficiently support this
data aggregation problem. A push-based approach, where each
node floods its data item in a multi-hop neighborhood, and a
pull-based approach, where each node collects data from nodes
in a multi-hop network neighborhood using a spanning tree. Our
goal is to identify situations where one approach outperforms
the other. For this, we implement these protocols in TOSSIM,
study overhead and yield as a function of the fraction of nodes
in the network that perform data aggregation over a multi-hop
neighborhood, and report our findings.

Keywords—sensor networks; in-network data aggregation;
multiple sinks.

I. INTRODUCTION

Network neighborhoods are a key communication abstrac-
tion in sensor networks that allows a sensor node to com-
municate with other, nearby sensor nodes in a well-defined
multi-hop neighborhood. Here, network neighborhoods are
defined by an anchor node A, a hop-radius R, and optionally
a predicate p. All sensor nodes N with a distance of at most R
hops from node A for which p(/N) holds belong to the multi-
hop neighborhood of node A. The anchor node A may then
perform operations on its neighborhood, such as computing
an aggregate over nodes in the neighborhood (e.g., computing
an average temperature over all nodes in a neighborhood).

The importance of network neighborhoods is related to
the fact that phenomena observed by sensor networks are
often spatially correlated, that is, nearby sensor nodes produce
correlated sensor output. This can be exploited, among others,
for sensor calibration [2], outlier detection and removal [6],
event correlation analysis [11], or node tasking [5]. The
significance of network neighborhoods is underlined by the
fact that several middleware services have been developed that
support the notion of network neighborhoods, including Hood
[14], Abstract Regions [13], and Logical Neighborhoods [8].

In many applications of network neighborhoods, all or
many nodes in a sensor network maintain a network neighbor-
hood with the same radius and perform the same operations
on the neighborhood. In this case, network neighborhoods of
different anchor nodes overlap, that is, a node participates in
the neighborhoods of many anchors. When collecting and ag-
gregating data from such overlapping network neighborhoods,

OThe work presented in this paper was partially supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322 (NCCR-MICS).

Bernd-Christian Renner
TU Hamburg-Harburg, Germany
christian.renner @tuhh.de

a node has to contribute its data items to all neighborhoods it
participates in.

This paper is concerned with protocols for data collection
from such overlapping multi-hop network neighborhoods. In
particular, we investigate two orthogonal approaches to this
problem: Push, where each node floods its data item to all
nodes in a network neighborhood, and Pull, where an anchor
collects data items from nodes in a neighborhood using a
spanning tree. The performance of these protocols heavily
depends on the anchor density, i.e., the fraction of nodes in
the network that need to collect data from a neighborhood.
While Push can be expected to work better for higher anchor
densities, Pull can be expected to work better for lower anchor
densities. However, in general it is not clear which approach
should be selected for a given anchor density. To investigate
this issue, we implement Push and Pull protocols in TOSSIM
and study yield and overhead as a function of anchor density.

We present the data collection problem in Sect. II and
introduce the two data collection approaches in Sect. III
Experimental results are presented and discussed in Sect. IV.

II. DATA COLLECTION PROBLEM

We consider the following data aggregation problem in a
multi-hop sensor network:

e A fraction of all nodes act as anchors and maintain a
multi-hop network neighborhood with hop-radius R. All
anchors use the same radius.

o All anchor nodes simultaneously perform an identical
aggregation operation over their neighborhoods. That is,
the performed operation is the same on all neighborhoods
(i.e., computing an average) and the operation refers to
the same data item (i.e., temperature) on all nodes in all
neighborhoods.

This data aggregation problem is motivated, among others,
by ongoing work of the same authors [11], which is concerned
with finding correlations between the output of a sensor and
the output of other nearby sensors. In an equipment moni-
toring application (e.g., [1]), for example, one is interested
in understanding if an abnormal behavior of one part of a
large machine is correlated with abnormal behavior of nearby
other parts of the machine. The work in [11] sets out to
automatically discover frequently occurring patterns of the
form “an abnormal temperature reading of machine part A
was preceded by abnormal vibration signatures of nearby parts
B and C in 70% of all cases.”

To implement the above application, machine parts would
be equipped with sensor nodes that monitor specific param-
eters of that part and generate events whenever an abnormal



behavior is detected. Each sensor node would act as an anchor
of a network neighborhood to monitor the occurrence of
events in its neighborhood. In particular, each anchor node
would perform an aggregation operation over its neighborhood
to count the occurrences of different types of events in the
neighborhood. This operation is repeated at regular intervals
and the resulting information is mined for frequent patterns.

Besides this specific motivating application, many other
applications follow the above pattern. In [13], a tracking
application is described where sensor nodes can detect the
proximity of a tracked object. To estimate the target’s posi-
tion, each node maintains a neighborhood and computes the
average of the positions of those nodes in the neighborhood
that currently detect the target.

III. DATA COLLECTION PROTOCOLS

Let us consider an instance of the data collection problem
described in Sect. II where each node in a sensor network acts
as an anchor of a network neighborhood with radius R. There
are two orthogonal approaches to solve the data collection
problem:

e Push: Each anchor node broadcasts its data item to all
nodes in its neighborhood with radius R.

o Pull: Each anchor node collects data items from all nodes
in its neighborhood with radius R.

In an ideal network, both approaches ensure that each
anchor node receives the data items from all nodes in its
neighborhood. This is true because of the symmetry of the
setup, i.e., all nodes perform at the same time the same
operation on the same data item on network neighborhoods
with the same radius. Note that the Push approach also
works if only a fraction of the nodes are anchors that need
to collect data from its neighborhood. However, every node
would have to push its data item to nodes within a radius R.
Obviously, this results in increasing overhead as the fraction
of anchor nodes decreases. The above two approaches have
very different characteristics:

o Push can be implemented with broadcast communication
and without any explicit routing structures by means of
scoped flooding. Pull is typically implemented with uni-
cast communication using an explicit routing structure,
for example a spanning tree of the neighborhood with
the anchor at the root, allowing nodes in a neighborhood
to route data items to the anchor. Establishing and
maintaining these routing structures generates overhead,
while the actual routing of data items is efficient. In
contrast, scoped flooding does not incur overhead for
setting up and maintaining routing structures, but the
actual flooding of data items incurs overhead as each
data item may be transmitted redundantly along multiple
paths.

« Push has lowest overhead if all nodes are anchor nodes,
because then every pushed data item is actually needed
by all nodes that receive it. Pull has highest overhead if
all nodes are anchor nodes, because then each node is
a member of the neighborhoods of many anchor nodes
and has to route its data item to all of them.

o Pull is suitable for in-network data aggregation, where
each node in the neighborhood first receives data items
from its children in a spanning tree, aggregates (e.g.,

averages) these data items and its own data item, and
forwards the result to its parent in the spanning tree. In
contrast, Push is not suitable for this type of aggregation,
because a pushed data item needs to be aggregated with a
different set of other data items for each receiving anchor.

The above discussion suggests that Push is most suitable
for high anchor densities, while Pull is most suitable for low
anchor densities. However, it is less obvious which of the
two strategies should be preferred if the anchor density is
somewhere in between these two extremes.

To study the performance of these two approaches as a
function of the anchor density, we consider specific implemen-
tations of the Push and Pull strategies. These are described in
the following sections.

A. Push: Scoped Flooding with Packet Aggregation

This approach is based on scoped flooding, where every
node floods its data item within a network neighborhood
of radius R. To reduce communication overhead, a node
tries to combine data items received from other nodes into a
single message by randomly waiting before sending a message
and including the data items that have been received in the
meantime into the outgoing message.

In more detail, protocol messages contain a list of data
items, each of which consists of the address and location of
the node that generated the data item, a timestamp, a hop
counter, and the actual payload data. A node first generates a
data item containing its address, a hop counter with value R,
and its sensor data. Then, the node waits for a random amount
of time (10 ... 1200 ms in our experiments'). From messages
arriving in the meantime, data items are extracted and filtered
to remove any items that have been forwarded previously.
Then, the hop counter in each item is decreased and items
with a value of zero are dropped. The remaining items and
the locally generated data item are then combined into a single
broadcast message. A single message can aggregate up to four
data items due to constrained message size.

B. Pull: Tree Routing with Data Aggregation

Every anchor first builds a spanning tree of its network
neighborhood with radius R. Nodes send data items along the
edges of the spanning tree(s) towards the anchor(s). We per-
form in-network data aggregation to aggregate sensor readings
(e.g., compute an average) rather than just aggregating packets
as for the Push protocol described above. We investigate
two variants of this approach. In the reactive variant, the
anchor sends a request to all nodes in the tree to collect data.
In the proactive variant, nodes proactively send data items
periodically.

In more detail, the protocol works as follows. The basic
approach to build a spanning tree of a network neighborhood
with radius R is similar to tree routing protocols such as
MintRoute [15]. All nodes send beacon messages at regular
intervals containing their address and a sequence number.
Using the fraction of received beacons, each node computes a
reception link quality for each network neighbor. The resulting
measurements are then filtered with an exponentially weighted

IThe protocol parameters given in this and the subsequent section have
been empirically tuned based on experiments with TOSSIM to optimize
protocol performance.



moving average (EWMA) filter to remove outliers (we use
a filter parameter of 0.1 in our experiments). The resulting
values are then exchanged among neighbors to compute a
bi-directional link quality for each neighbor. Unidirectional
and low quality links are ignored when building the spanning
tree. To establish the spanning tree, a distance vector approach
is used to compute the ‘“shortest” path (in terms of the
product of link qualities along the path) from each node
to the anchor. For this, each node broadcasts a message
containing its own address and its current distance to the
anchor. Exchange of link qualities and tree establishment
are combined into a single tree building message. Note that
tree establishment executes concurrently for all anchors and
each node may participate in many spanning trees. Due to
constrained memory, in our implementation each node can
handle up to 11 network neighbors, up to 6 tree children, and
each node can participate in up to 10 spanning trees (i.e.,
network neighborhoods).

To reduce the probability of packet collision, all messages
are randomly delayed (5 ... 600 ms in our experiments) before
transmission. Nonetheless we noted during initial experiments
that packet loss results in many nodes not participating in
the tree. We therefore sent three copies of each tree building
message in our experiments. Note that as the latter is a
broadcast message, schemes based on acknowledgments and
retransmissions won’t work here.

Once every anchor has established a spanning tree, data
collection is executed periodically. A node first generates
its sensory data and then waits for messages from its tree
children. Then, it aggregates the received values and its own
values (e.g., computes an average). Finally, the node sends
a message to its tree parent containing the aggregated value.
Receipt of these messages is acknowledged and unacknowl-
edged messages are retransmitted after a timeout (we allow
up to two retransmissions in our experiments).

In the proactive variant, every node periodically generates
and sends data items. In the reactive variant, anchors send
a request message along the spanning tree to trigger data
collection. This variant is useful if data collection is only
performed irregularly. In our experiments, two copies of these
broadcast messages are sent to increase the chance of nodes
receiving a request.

IV. RESULTS

The goal of our experiments is the identification of criteria
for the selection of a data collection protocol (i.e., Push or
Pull). The key metrics we are interested in are yield (the
fraction of generated data items that are actually received
by anchors)’ and overhead (the number of messages/bytes
needed to collect data). Key parameters are anchor density,
the radius of network neighborhoods, and network density. We
also investigated the impact of different protocol parameters
(e.g., maximum number of retransmissions, backoff delays)
to tune protocol performance. The actual choices used during
the experiments are reported in Sect. III.

Results were obtained from TOSSIM using the empirical
radio model (which has been generated from real-world link

2Packet loss is a major problem in most multi-hop data collection sensor
networks. Data yields of 58% for Great Duck Island, 40% for Redwood
monitoring, 68% for Volcano monitoring [3] have been reported.

quality traces) and BMAC [9], the standard TinyOS MAC
protocol. Due to constrained space, we focus on a single set
of experiments for fixed network density and neighborhood
radius. Other parameter choices result in a similar qualitative
behavior, which is described in more detail in a separate report
[10].

We consider 40 nodes that are uniformly distributed in a
30m by 30m area. Our main parameter anchor density is
defined as the fraction of anchor nodes among all nodes. Each
anchor collects data from a 4-hop neighborhood considering
only nodes that are at most 15m apart. Data collection is
repeated every 60 seconds. Payload data consists of counters
that report the frequency of different types of events during
the last 60 seconds (see Sect. IT). The total size of the payload
data generated by each node per round is 4 bytes.

Fig. 1 shows the results we obtained for different anchor
densities. Subfigure (a) shows the yield, i.e., the fraction of
data items actually received by anchors among data items
anchors should ideally receive. Subfigures (b) and (c) show
the number of packets and bytes sent by the protocols per
received data item. The values for the tree protocols do not
include overhead for tree construction, assuming a best-case
network environment where tree construction is a one-time
overhead and maintenance costs can be ignored.

With respect to overhead, trees perform better for lower
anchor densities as expected. However, the break-even point
is at a rather low anchor density < 0.2. In very dynamic
networks requiring frequent updates of the spanning trees,
even smaller values must be expected for the break-even
point. Hence, trees should be only considered for very small
anchor densities. This came out as a surprise, as we expected
trees to perform much better due to the lack of redundant
transmissions and due to in-network data aggregation.

With respect to yield, all protocols performed remarkably
bad. Even in the best case, the tree protocols show a loss
of 20%, while scoped flooding exhibits a loss of as much as
55% (note that scoped flooding is independent of the number
of anchors). One could expect that increasing the number
of retransmissions for the tree protocols would make things
better, but in fact the opposite is true. The reason for this is
that almost all packet loss is caused by MAC-layer collisions.
Increasing the number of retransmissions only resulted in even
more collisions and loss.

The reasons for this are two-fold. Firstly, our data collec-
tion protocols exhibit a specific traffic pattern, where longer
periods of idle time are followed by traffic bursts, where all
nodes transmit data almost concurrently. Still, the payload data
in our experiments is small (only few bytes per node per 60
seconds), such that one could expect that the underlying MAC
can schedule these transmissions without generating too much
collisions. However, BMAC [9] requires the transmission of
lengthly preambles before each packet, resulting in a large
channel utilization even for small payloads. Further, BMAC
does not deal with the hidden terminal problem, resulting in
a large number of collisions even for a moderate channel
utilization. While scheduled protocols such as LMAC [12]
eliminate this problem, they have a high overhead in idle
situations. In fact, this observation led us to design a MAC
protocol that is more suitable for bursty traffic patterns by
combining low overhead in idle situation with collision-free
transmissions. We expect that this protocol, once available,



——flooding ——flooding L ——flooding
. . 200 .
- - - proactive tree| 10 - - - proactive tree - - - proactive tree
0.8 & - - reactive tree = - - reactive tree - - reactive tree
<>\ ] £
o Q\ . S 8 £ 1501
g o“ g9 3 100]
204 IR —O) @ o
o T 2 4 ]
[5] >
®© o
02 | 50
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 1 0 0.2 0.4 0.6 0.8 1
anchor density anchor density anchor density
(a) (b) (©)
Fig. 1. Simulation results as a function of anchor density: (a) yield (b) packet overhead (c) byte overhead.

will have a significant impact on the performance of our data
collection protocols.

A further observation is that with the tree approach, some
nodes are not included in a spanning tree (even though they
should be included) due to packet loss during tree construc-
tion. This is especially bad for yield, as these nodes will
never contribute data items. When considering only nodes that
are actually included in the spanning tree for the calculation
of the yield, we obtain a maximum yield of about 80% for
small anchor densities and a minimum yield of about 60%
for high anchor densities for the proactive variant. Comparing
these values with those reported in Fig. 1 (a), we conclude
that failure to include all required nodes in a spanning tree
substantially contributes to low yield for high anchor densities.

Finally, the reactive tree variant has a significantly larger
overhead than the proactive variant due to the request mes-
sages and results in a lower yield because a lost request
message prevents nodes from participating in data collection.

V. RELATED WORK

In summary, the present paper is the first effort to compare
Push and Pull strategies for data aggregation over overlapping
multi-hop network neighborhoods. In [7], a similar com-
parison is performed for single-hop network neighborhoods,
a much simpler problem as direct communication between
producers and consumers of data items is always possible,
eliminating the need for in-network aggregation. Similarly,
Hood [14] supports data collection only from single-hop
neighborhoods. In [4], a protocol is studied for routing data
from multiple sources to multiple sinks across multiple hops.
However, while we consider network neighborhoods, [4]
assumes that sources and sinks are globally distributed over
the network and in-network data aggregation is not performed.
Finally, Abstract Regions [13] and Logical Neighborhoods [8]
both support data aggregation over multi-hop neighborhoods,
but the authors do not compare pull and push approaches.

VI. CONCLUSIONS

We studied the problem of data aggregation from overlap-
ping multi-hop network neighborhoods, where nodes have to
contribute its data items to multiple network neighborhoods
for aggregation. We considered two orthogonal approaches to
this problem, a Push approach based on scoped flooding, and
a Pull approach based on spanning trees. We implemented

these protocols in TOSSIM to study yield and overhead as
a function of anchor density, i.e., the fraction of nodes in
the network that perform data aggregation over a multi-hop
network neighborhood. We find that the Push approach has
lower overhead than the Pull approach unless anchor density
is very low. However, both approaches have a surprisingly
low yield due to the characteristics of the underlying MAC
protocol, motivating the need for MAC protocols with better
support for bursty traffic patterns.

REFERENCES

[1] R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, L. Krishnamurthy,
N. Kushalnagar, L. Nachman, and M. Yarvis. Design and Deployment
of Industrial Sensor Networks: Experiences from the North Sea and
a Semiconductor Plant. In Sensys 2005, San Diego, USA, November
2005.

V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A Collab-
orative Approach to In-Place Sensor Calibration. In IPSN, Palo Alto,
USA, April 2003.

J. Choi, J. Lee, M. Wachs, and P. Levis. Opening the sensornet black
box. Technical Report SING-06-03, Stanford Information Networks
Group, 2006.

P. Ciciriello, L. Mottola, and G. P. Picco. Efficient routing from multiple
sources to multiple sinks in wireless sensor networks. In EWSN 2007,
Delft, The Netherlands, January 2007.

C. Frank and K. Romer. Algorithms for generic role assignment in
wireless sensor networks. In Sensys 2005, San Diego, USA, November
2005.

S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom.
Declarative Support for Sensor Data Cleaning. In Pervasive 2006,
Dublin, Ireland, May 2006.

A. Lachenmann, P. J. Marr6n, D. Minder, O. Saukh, M. Gauger, and
K. Rothermel. Versatile support for efficient neighborhood data sharing.
In EWSN 2007, Delft, The Netherlands, January 2007.

L. Mottola and G. P. Picco. Logical neighborhoods: A programming ab-
straction for wireless sensor networks. In DCOSS 2006, San Francisco,
USA, June 2006.

J. Polastre, J. L. Hill, and D. E. Culler. Versatile low power media
access for wireless sensor networks. In SenSys 2004, Baltimore, USA,
November 2004.

C. Renner. Local data aggregation for sensor networks with multiple
sinks. Technical report, TU Hamburg-Harburg, April 2007.

K. Romer. Discovery of Frequent Distributed Event Patterns in Sensor
Networks. In EWSN 2008, Bologna, Italy, January 2008.

L. F. W. van Hoesel and P. J. M. Havinga. A Lightweight Medium
Access Protocol (LMAC) for Wireless Sensor Networks. In INSS,
Tokyo, Japan, June 2004.

M. Welsh and G. Mainland. Programming Sensor Networks Using
Abstract Regions. In NSDI 2004, Boston, USA, March 2004.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A
neighborhood abstraction for sensor networks. In MobiSys, Boston,
USA, June 2004.

A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
reliable multihop routing in sensor networks. In SenSys 2003, 2003.

(3]

(4]

(31

(6]

(71

(8]

(9]

[10]
[11]
[12]

[13]
[14]

[15]



