
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

Information Processing Letters 103 (2007) 88–93

www.elsevier.com/locate/ipl

Linear self-stabilizing algorithms for the independent and
dominating set problems using an unfair distributed scheduler

Volker Turau

Hamburg University of Technology, Institute of Telematics, Schwarzenbergstraße 95, 21073 Hamburg, Germany

Received 21 July 2006; received in revised form 19 February 2007

Available online 12 March 2007

Communicated by A.A. Bertossi

Abstract

This paper presents distributed self-stabilizing algorithms for the maximal independent and the minimal dominating set prob-
lems. Using an unfair distributed scheduler the algorithms stabilizes in at most max{3n − 5,2n} resp. 9n moves. All previously
known algorithms required O(n2) moves.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Self-stabilizing algorithms; Fault tolerance; Distributed computing; Graph algorithms

1. Introduction

The concept of self-stabilization—introduced by
Dijkstra [3]—is considered to be a very general tech-
nique to design a system to tolerate arbitrary transient
faults. A distributed system is self-stabilizing if it can
start at any possible global configuration and regain
consistency in a finite number of steps by itself with-
out any external intervention and remains in a consistent
state [4]. The state of a fault-free system is defined by
a local predicate based on the states of the nodes. The
paradigm has been developed for different communica-
tion styles. In the shared-variable version, every node
executes the same program, and maintains and changes
its own state based on its current state and the states of
its neighbors. In wireless systems nodes broadcast their
state to their neighbors after every change of the state.

E-mail address: turau@tuhh.de.

The program of every node consists of a set of rules of
the form:

〈precondition〉 → 〈statement〉.
The precondition of a rule is a boolean expression in-
volving the state of the node itself and its neighbors. The
statement updates the state of the node only. The execu-
tion of a statement is called a move. It is assumed that
rules are atomically executed, i.e., the evaluation of a
precondition and the move are performed in one atomic
step. A rule is said to be enabled if its precondition eval-
uates to true. A node is enabled if at least one of its rules
is enabled. Self-stabilizing systems operate in rounds. In
every round, first, all nodes check the preconditions of
their rules. Then a scheduler selects a subset of the en-
abled nodes to make a move. Common schedulers are
the central scheduler (only a single node makes a move
in every round), the unfair distributed scheduler (any
nonempty subset of the enabled nodes can make their
moves simultaneously), and the fully distributed or syn-

0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.02.013

Aut
ho

r's

pe
rs

on
al

co

py

V. Turau / Information Processing Letters 103 (2007) 88–93 89

chronous scheduler (all enabled nodes make their moves
simultaneously). Although it is easier to prove stabiliza-
tion for algorithms working under the central scheduler,
the fully distributed and the unfair distributed scheduler
are more suitable for practical implementations. Note
that the unfair distributed scheduler subsumes the other
two types of schedulers and is the most general concept.

The construction of maximal independent sets (MIS)
and minimal dominating sets (MDS) in distributed sys-
tems has attracted a lot of research due to the importance
of the concept for many applications, e.g., clustering
in wireless networks [1]. Self-stabilizing algorithms for
these two problems based on the central scheduler mak-
ing at most 2n (resp., (2n + 1)n) moves have been pro-
posed by various authors [6,8]. To make use of these
algorithms with a distributed scheduler two transfor-
mation techniques are available: randomization [9] and
local mutual exclusion [2]. In the first case the algo-
rithms are only probabilistically self-stabilizing and in
the second case unique process identifiers are required.
Usually the transformed algorithms do not stabilize as
fast as problem-specific algorithms. Two very similar al-
gorithms for the MIS problem based on the fully distrib-
uted scheduler requiring unique node identifiers have
been developed [5,7]. Both algorithms stabilize in O(n)

rounds, but require O(n2) moves in the worst case. Xu
et al. present an algorithm for the MDS problem using
a distributed scheduler that stabilizes after at most 4n

rounds [10]. An analysis with respect to the required
number of moves is not given. If an algorithm stabilizes
after at most m moves (resp., r rounds) using an unfair
distributed scheduler, then these bounds are valid for the
fully distributed scheduler, but note that the opposite is
not necessarily true.

In wireless systems with bounded resources the num-
ber of moves is at least as important as the number of
rounds. The reason is that nodes broadcast their state
after every move to their neighbors. Since communica-
tion is the main consumer of energy, a reduction of the
number of messages prolongs the lifetime of a network.

The MIS and MDS algorithms presented in this work
are the first algorithms to our knowledge that require
only O(n) moves in the worst case using an unfair
scheduler. The algorithms require unique node identi-
fiers.

2. Maximal independent sets

Let G = (V ,E) be a connected undirected graph. An
independent set (IS) S of G is a subset of V such that
(u, v) /∈ E ∀u,v ∈ S. S is a maximal independent set
(MIS) if any node v not in S has a neighbor in S. The

self-stabilizing algorithms for the MIS problem in [6,8]
are based on two simple rules that maintain a set I :

1. A node having no neighbor in I joins I .
2. A node in I having a neighbor in I leaves I .

To make this algorithm stabilize under a distributed
scheduler it must be avoided that neighboring nodes
simultaneously join or leave I but still being enabled
in the following round. The idea of Ikeda et al. is
to reduce the number of neighboring nodes executing
rule 2 in the same round [7]. This is achieved by allow-
ing nodes to leave I only in case they have a neigh-
bor in I that has a lower identifier. Thus, among the
nodes where rule 2 is enabled, at least the node with
the smallest identifier does not execute rule 2 in this
round. They proved that this algorithm stabilizes after at
most (n+2)(n+1)/4 moves using the unfair scheduler.
Goddard et al. changed both rules: a node joins (resp.,
leaves) I if it does not have a neighbor in I with higher
identifier (resp., if it has a neighbor in I with higher
identifier) [5]. This did not break the O(n2) limit of
necessary moves. They proved that using the fully dis-
tributed scheduler, the algorithm stabilizes in n rounds,
but still makes O(n2) moves in the worst case (e.g., for
a simple path with n nodes). The authors of [5] do not
consider an unfair scheduler, but their result about the
rounds is not true for the unfair scheduler. A big dis-
advantage of this algorithm is that even if the set I is
a MIS, some nodes may still be enabled. The reason
is that the algorithm produces a MIS that favors nodes
with higher identifiers.

To avoid situations where neighboring nodes exe-
cute rules simultaneously, nodes need to know whether
one of their neighbors is enabled. The above cited algo-
rithms do this for nodes where rule 2 is enabled. They
make use of the fact that if for a node v rule 2 is en-
abled, then there exists at least one neighbor of v where
rule 2 is also enabled. But in general a node cannot tell
from its own state and the state of a neighboring node
alone whether a neighbor is enabled, in particular this
is true for rule 1: the fact that a node has no neighbor
in I does not allow to make this assumption about any
of its neighbors. A solution for this problem presented
in this paper is to use an additional state which indicates
that a node is ready for making a move with rule 1. This
reduces the worst case number of moves to O(n).

The proposed algorithm uses three states. The state
is defined by the variable state, its range of values is:
IN,OUT and WAIT. The value IN means that the node
is part of the MIS and OUT indicates that the node is
not part of the MIS. The state WAIT signals that a node

Aut
ho

r's

pe
rs

on
al

co

py

90 V. Turau / Information Processing Letters 103 (2007) 88–93

wants to change into state IN, it may do so provided it
has no neighbor with the same state but lower identifier.
To formally define the rules the following predicates de-
fined for each node v are needed:

• inNeighbor(v) ≡ ∃w ∈ N(v): w.state = IN.
• waitNeighborWithLowerId(v) ≡ ∃w ∈ N(v):

w.state = WAIT ∧ w.id < v.id.
• inNeighborWithLowerId(v) ≡ ∃w ∈ N(v):

w.state = IN ∧ w.id < v.id.

The self-stabilizing algorithm AMIS uses the following
four rules:

1. state = OUT ∧ ¬inNeighbor(v) → state := WAIT.
2. state = WAIT ∧ inNeighbor(v) → state := OUT.
3. state = WAIT ∧ ¬ inNeighbor(v) ∧

¬waitNeighborWithLowerId(v) → state := IN.
4. state = IN ∧ inNeighbor(v) → state := OUT.

Lemma 2.1. In any configuration in which no node is
enabled the set I = {v | v.state = IN} is a maximal in-
dependent set of G.

Proof. Suppose there exists a node with state WAIT.
Let v be such a node with minimal id. Since the pre-
condition of rule 2 is not satisfied, v has no neighbor
with state IN. Since v has no neighbor w with state
WAIT and w.id < v.id, rule 3 is enabled. This contra-
diction shows that there is no node with state WAIT.
Since rule 4 is not enabled, the set I is independent.
Finally, I cannot be extended because rule 1 is not en-
abled. �

Let I be any maximal independent set for G and let
the state of each node in I be IN and OUT for nodes out-
side I . Then no rule is enabled. Thus, if the algorithm
is initialized with a MIS, then this set is not changed
again.

Lemma 2.2. If a node executes rule 3 then it will never
again execute a rule and each neighbor of this node will
execute at most one more rule and this will be rule 2.

Proof. Let v be a node that executes rule 3. At this in-
stant all neighbors of v have state OUT or WAIT and
those with state WAIT have a higher identifier than v.
Thus, none of the neighbors of v can execute rules 3
and 4 in this round because the preconditions of these
rules are not satisfied. Hence, the neighbors of v can
only execute rules 1 or 2 in the same round. This implies
that after this round v has state IN and all neighbors of

v have state OUT or WAIT. The only rule that v can
execute next is rule 4, but in order to do so, one of
its neighbors would have to change into state IN with
rule 3. But as long as v is in state IN this is impossible.
Therefore, v will never execute a rule again. Further-
more, only neighbors of v with state WAIT can execute
a rule and this is rule 2. After that execution they have
state OUT and cannot execute another rule. �
Lemma 2.3. Only the following four sequences of states
and their suffixes are possible for each node during the
execution of algorithm AMIS using an unfair scheduler:

WAIT OUT WAIT OUT

WAIT OUT WAIT IN

IN OUT WAIT OUT

IN OUT WAIT IN

IN OUT

Proof. (a) Consider a node v initially in state WAIT. In
this state v can only execute rules 2 and 3. When v exe-
cutes rule 3 then according to Lemma 2.2 v changes into
state IN and remains in that state forever. This corre-
sponds to the sequence WAIT IN. Otherwise v executes
rule 2 and moves to state OUT. Consider the case that v

executes another rule. This can only be rule 1 and thus v

cannot have a neighbor in state IN at that instant. Now
v is in state WAIT. In case no neighbor of v changes
to state IN before v executes again, this execution must
be with rule 3. According to Lemma 2.2 the node never
executes a rule again. This corresponds to the sequence
WAIT OUT WAIT IN. Otherwise a neighbor of v has in
the mean time changed to state IN using rule 3. Then
node v only makes one more move using rule 2. This
corresponds to the sequence WAIT OUT WAIT OUT.

(b) Consider a node v initially in state OUT. v

can only execute rule 1, bringing the node into state
WAIT. Note, that at this moment, v has no neighbor
with state IN. If before the next move of v no neigh-
bor has changed its state to IN, v will execute rule 3
and then it will never make a move again. This leads to
the sequence OUT WAIT IN. Otherwise a neighbor of
v changes to state IN and as before, v makes only one
more move giving rise to sequence OUT WAIT OUT.

(c) Consider a node v initially in state IN. Then v can
only execute rule 4 bringing the node into state OUT. In
order to execute again all neighbors must change their
state to OUT or WAIT. Then v can execute rule 1 lead-
ing to state WAIT. As before, the node can now execute
only rule 2 or rule 3. This leads to one of the sequences
IN OUT WAIT IN or IN OUT WAIT OUT. �

Aut
ho

r's

pe
rs

on
al

co

py

V. Turau / Information Processing Letters 103 (2007) 88–93 91

The following theorem follows immediately from the
last three lemmata.

Theorem 2.1. Algorithm AMIS is self-stabilizing under
an unfair distributed scheduler and stabilizes after at
most 3n moves with a maximal independent set, where
n is the number of nodes. This bound is attained.

To see that this bound is really attained, consider n

nodes arranged with ascending identifiers along a line,
were each node is connected to its neighbors. If initially
all nodes are in state IN, then it is possible that all nodes
first change into state OUT and then into state WAIT.
Finally all nodes will then change into their stable state,
where the nodes on the line are alternating in state IN
and OUT. Thus, each node makes 3 moves.

The total number of moves can be further reduced by
slightly changing rule 4 as follows:

4′. state = IN ∧ inNeighborWithLowerId(v)
→ state := OUT.

Corollary 2.1. With rule 4′ algorithm AMIS is self-
stabilizing under an unfair distributed scheduler and
stabilizes in at most max{3n−5,2n} moves. This bound
is attained.

Proof. Clearly the statements of Lemmas 2.1–2.3 still
hold. First, consider the case that initially no node is in
state IN. By Lemma 2.2 rule 4 is never executed and if a
node executes rule 2, it will never execute a rule again.
Thus by Lemma 2.3, every node makes at most 2 moves,
in total at most 2n moves. Now consider the case that
initially there is at least one node with state IN. Then the
node in state IN with the smallest identifier never makes
a move and its neighbors make at most one move. Since
each node has at least one neighbor, the bound follows
directly from Lemma 2.3.

To see that this bound is really attained, consider
again n > 4 nodes arranged with ascending identifiers
along a line, where each node is connected to its neigh-
bors. If initially all nodes are in state IN and the sched-
uler selects the nodes repeatedly from right to left, then
3n − 5 moves are made before stabilization. �
3. Minimal dominating sets

A dominating set (DS) S of G is a subset of V such
that each v ∈ V \S has at least one neighbor in S. S is
a minimal dominating set (MDS) if for any node v ∈ S

the set S\{v} is not dominating. A maximal independent
set is also a minimal dominating set, but the opposite

is in general not true. Since it is desirable that a self-
stabilizing algorithm initialized with a minimal dom-
inating set does not make any move, MIS-algorithms
are no suitable solution. The self-stabilizing algorithm
for the MDS problem in [10] stabilizes after at most 4n

rounds using the fully distributed scheduler.
Our algorithm for the MDS problem is an exten-

sion of the algorithm from the previous section. Apart
from the variable state, each node has an additional
variable dependent that points to another node. In case
a node v has a single neighbor w with state IN then
v.dependent = w and if it has more than one neighbor
with state IN or has itself state IN then v.dependent =
Λ. The following additional predicates defined for each
node v are needed:

• uniqueInNeighbor(w,v) ≡ ∃uniquew ∈ N(v):
w.state = IN.

• dependentNeighbors(v) ≡ ∃w ∈ N(v):
w.dependent = v.

The self-stabilizing algorithm AMDS uses the following
seven rules:

1. state = OUT ∧ ¬ inNeighbor(v) → state := WAIT.
2. state = WAIT ∧ inNeighbor(v) → state := OUT.
3. state = WAIT ∧ ¬ inNeighbor(v) ∧

¬waitNeighborWithLowerId(v) → state := IN,

dependent := Λ.
4. state = IN ∧ inNeighbor(v) ∧

¬dependentNeighbors(v) → state := OUT.
5. state = IN ∧ ¬dependent = Λ → dependent := Λ.
6. state = OUT ∧ uniqueInNeighbor(w,v) ∧

¬ dependent = w → dependent := w.
7. state = OUT ∧ moreThanOneInNeighbor(v) ∧

¬ dependent = Λ → dependent := Λ.

Lemma 3.1. In any configuration in which no node
is enabled there is no node with state WAIT and the
set D = {v | v.state = IN} is a minimal dominating set
for G.

Proof. Suppose there exists a node with state WAIT.
Let v be such a node with minimal id. Since the precon-
dition of rule 2 is not satisfied, v has no neighbor with
state IN. Since v has no neighbor w with state WAIT
and w.id < v.id, rule 3 is enabled. This contradiction
shows that there is no node with state WAIT.

Since rule 1 is not enabled, all nodes with state OUT
have a neighbor in D, hence D is dominating. Suppose
there exists a node v ∈ D such that D\{v} is domi-
nating. Hence, v has state IN and there exists w1 ∈

Aut
ho

r's

pe
rs

on
al

co

py

92 V. Turau / Information Processing Letters 103 (2007) 88–93

N(v) ∩ D. By rule 4 there exists w2 ∈ N(v) such that
w2.dependent = v and because of rule 5 node w2 has
state OUT. Then w2 /∈ N(w1) since rule 7 is not enabled
for node w2. Since D\{v} is dominating, there exists
w3 ∈ N(w2) ∩ D\{v,w1}. This yields w2.dependent =
Λ since rule 7 is not enabled for node w2. This con-
tradiction proves that D is a minimal dominating set
for G. �

Let D be any minimal dominating set for G and let
the state of each node in D be IN and OUT for nodes
outside D. Furthermore, set the value of the pointer
dependent of each node according to the rules 5–7. Then
no rule is enabled.

Lemma 3.2. If a node executes rule 3 then it will never
again execute a rule.

Proof. Let v be a node that executes rule 3. At this in-
stant all neighbors of v have state OUT or WAIT and
those with state WAIT have a higher identifier than v.
Thus, none of the neighbors of v can execute rules 3,
4, or 5 in this round because the preconditions of these
rules are not satisfied. Hence, the neighbors of v can
only execute rules 1, 2, 6, and 7 in the same round. This
implies that after this round v has state IN and all neigh-
bors of v have state OUT or WAIT. The only rule that
v can execute next is rule 4, but in order to do so, one
of its neighbors would have to change into state IN with
rule 3. But as long as v is in state IN this is impossible.
Therefore, v will never execute a rule again. �
Lemma 3.3. Let w be a neighbor of a node v that just
has executed rule 3. Then w will at most make 4 moves
before stabilization.

Proof. The node w is in state OUT or WAIT. If the state
is WAIT, then w can only execute rule 2 and change
to state OUT. If w is in state OUT it can only execute
rules 6 and 7 until stabilization, thus the node remains
forever in state OUT. In order to execute again after the
first execution of rule 6 or 7, the number of neighbors of
w with state IN has to change. Since v remains in state
IN forever, this number is at least 1. If another neighbor
of w changes into state IN (by executing rule 3), then
w can execute at most rule 7 and then w will never exe-
cute again. The only other possibility is that the number
of neighbors of w in state IN decreases. Only in case
this number drops from 2 to 1, rule 6 is executed. But
this can happen only once. Hence, the longest sequence
of rule executions for w is: 2, 7, 6, 7. This proves the
lemma. �

Lemma 3.4. During the execution of algorithm AMDS

each node makes at most 9 moves.

Proof. (a) Consider a node v initially in state OUT,
v can execute rules 1, 6 and 7. (i) Suppose that at the
first execution of node v it has no neighbor in state
IN. Then only rule 1 is enabled, moving the node into
state WAIT. Consider the next execution of node v. In
case the node still does not have neighbor with state IN,
then it will execute rule 3 and will not execute again.
On the other hand, if v has a neighbor with state IN,
then this node has executed rule 3 in the mean time. By
Lemma 3.3, v will make at most four more moves, lead-
ing to a total of 5 moves for this case. (ii) Suppose that
at the first execution of node v it has at least one neigh-
bor in state IN. Then at most one of the rules 6 and 7
can be enabled, both leaving the node in state OUT. Af-
ter the execution of one of these rules only the value of
the variable dependent is changed. In case at the next
move of v, the node has an additional neighbor in state
IN, a neighbor of v has executed rule 3 in the mean time
and Lemmas 3.2 and 3.3 show that the node makes at
most 5 moves. Otherwise, the number of neighbors in
state IN has decreased. Because v made a move, this
number has either dropped from 2 to 1 (rule 6 was exe-
cuted) or from 1 to 0 (rule 1 was executed). In the first
case, after the execution of the rule either v loses its re-
maining neighbor with state IN enabling rule 1 and after
this move the node makes at most four more moves as
shown above or it receives a new neighbor with state
IN also leading to at most four more moves. Thus, in
total at most 7 moves. The case in which rule 1 was
executed by node v can treated similarly and leads to
at most 6 moves. Summarizing, a node initially in state
OUT makes at most 7 moves.

(b) Consider a node v initially in state WAIT. In this
state v can only execute rules 2 and 3. By Lemma 3.2
it is only necessary to consider the case that v executes
rule 2, i.e., v has a neighbor in state IN. Then the node
is in state OUT. From part (a) of this proof it is known
that v makes at most 7 more moves. This leads to a total
of 8 moves for this case.

(c) Consider a node v initially in state IN, v can ex-
ecute rules 4 and 5. In case rule 5 is executed first, the
node is still in state IN and now can only execute rule 4
bringing the node into state OUT. From part (b) of this
proof it is known that v makes at most 8 more moves.
This leads to a total of 9 moves for this case. �

The following theorem follows immediately from the
last four lemmata.

Aut
ho

r's

pe
rs

on
al

co

py

V. Turau / Information Processing Letters 103 (2007) 88–93 93

Table 1
Number of moves before stabilization of the two variants of each al-
gorithm

Average node degree 3.8 6.5 14.3

AMIS 856 1063 1286
ModifiedAMIS 413 435 489
AMDS 1578 1817 1891
ModifiedAMDS 968 1053 1212

Theorem 3.1. AlgorithmAMDS is self-stabilizing under
an unfair distributed scheduler and stabilizes after at
most 9n moves with a minimal dominating set, where n

is the number of nodes.

As in the previous section, rule 4 can also be changed
by replacing the predicate inNeighbor with inNeighbor-
WithLowerId.

4. Conclusion

This paper presented the first distributed self-stabi-
lizing algorithms for the maximal independent and for
the minimal dominant set problem that require a linear
number of moves using an unfair distributed schedu-
ler. All previously known algorithms required O(n2)

moves.
Simulations indicate that the modified algorithms

need far less moves on the average than AMIS (resp.,
AMDS). Table 1 lists some results of simulations of the
algorithms for three classes of unit disk graphs with
500 nodes using the fully distributed scheduler. This
class of graphs is important for the modeling of wireless
communication in general. The algorithms were applied
to 5000 randomly generated unit disk graphs with the
average node degree given in the table. The table lists
the average number of moves before stabilization, the

algorithms needed about 5 to 9 rounds before stabi-
lization. Simulations with other graph classes and other
sizes yielded similar results.

It is not known whether the number of moves can be
reduced to 2n. The determination of the expected num-
ber of moves of the algorithms is another open problem.

References

[1] K. Alzoubi, P.J. Wan, O. Frieder, Maximal independent set,
weakly-connected dominating set, and induced spanners in wire-
less ad hoc networks, International Journal of Foundations of
Computer Science 14 (2) (2003) 287–303.

[2] J. Beauquier, A.K. Datta, M. Gradinariu, F. Magniette, Self-
stabilizing local mutual exclusion and daemon refinement,
Chicago Journal of Theoretical Computer Science 1 (2002).

[3] E. Dijkstra, Self stabilizing systems in spite of distributed con-
trol, Comm. ACM 17 (11) (1974) 643–644.

[4] S. Dolev, Self-Stabilization, MIT Press, 2000.
[5] W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani, Self-

stabilizing protocols for maximal matching and maximal inde-
pendent sets for ad hoc networks, in: Proc. Int. Parallel and Dis-
tributed Processing Symposium (2003).

[6] S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, P.K. Srimani,
Self-stabilizing algorithms for minimal dominating sets and
maximal independent sets, Computer Mathematics and Appli-
cations 46 (5–6) (2003) 805–811.

[7] M. Ikeda, S. Kamei, H. Kakugawa, A Space-optimal self-
stabilizing algorithm for the maximal independent set problem,
in: Proc. 3rd Int. Conf. on Parallel and Distributed Computing,
Applications and Technologies, 2002, pp. 70–74.

[8] S.K. Shukla, D.J. Rosenkrantz, S.S. Ravi, Observations on self-
stabilizing graph algorithms for anonymous networks, in: Proc.
2nd Workshop on Self-Stabilizing Systems, 1995, pp. 7.1–7.15.

[9] V. Turau, C. Weyer, Randomized self-stabilizing algorithms
for wireless sensor networks, in: Proc. Int. Workshop on Self-
Organizing Systems, 2006, pp. 74–89.

[10] Z. Xu, S.T. Hedetniemi, W. Goddard, P.K. Srimani, A synchro-
nous self-stabilizing minimal domination protocol in an arbitrary
network graph, in: Proc. 5th Int. Workshop on Distributed Com-
puting, 2003, pp. 26–32.

