
Computing Bridges, Articulations, and

2-Connected Components in Wireless Sensor

Networks

Volker Turau

Hamburg University of Technology, Institute of Telematics
Schwarzenbergstraße 95, 21073 Hamburg, Germany

turau@tuhh.de

Abstract. This paper presents a simple distributed algorithm to de-
termine the bridges, articulation points, and 2-connected components in
asynchronous networks with an at least once message delivery semantics
in time O(n) using at most 4m messages of length O(lg n). The algorithm
does not assume a FIFO rule for message delivery. Previously known al-
gorithms either use longer messages or need more time. The algorithm
meets the requirements of wireless senor networks and can be applied in
several areas relevant to this field such as topology control, clustering,
localization and virtual backbone calculations.

1 Introduction

Sensor networks - networks of small, resource-constrained wireless devices em-
bedded in the physical environment - present new challenges to the design and
implementation of distributed algorithms. Energy efficiency is the key to pro-
longing the network life time and is thus of primary importance. Communication
is the main consumer of energy and the consumption grows with the lengths of
the messages. If energy consumption is not equally distributed over all nodes in
the network, hot spots will emerge. This will lead to an early failure of these
nodes, which may result in a disconnected network, that is no longer able to
fulfill its task. Hence, it is important to identify hot spots and to use alternative
routing paths to equally spread the load of communication.

The topology of a wireless sensor network is represented by an undirected
graph G = (V, E) where V is the set of nodes and E ⊆ V × V the set of
edges describing the available communication links: (u, v) belongs to E means
that u can send messages to v and vice versa. The topology depends on uncon-
trollable factors such as node mobility, weather interference noise, multi-path
fading as well as on controllable parameters such as transmit power. Articula-
tion points of G are likely to become hot spots, if they fail or run out of energy
the network becomes disconnected. Hence, the number of articulation points of
G reveals the number of weak points within the network topology. A high de-
gree of fault-tolerance is achieved for networks that are k-connected, and this

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

1

http://dx.doi.org/10.1007/11963271_15

property increases with increasing k. These networks provide multiple-path re-
dundancy between every pair of nodes enabling techniques such as long sleeping
periods and load balancing. Using random geometric graphs Bettstetter proved
in [1] that the probability that a network with n � 1 nodes, each node with
a transmission range r0, and a homogeneous node density ρ is k-connected is
P (G is k−connected) ≈ P (δ ≥ k) for P (δ ≥ k) almost one (δ denotes the mini-
mum node degree of G) and this probability rises with ρ and r0. Increasing the
node density comes with higher costs and is very often not a valid option. The
value of r0 is of crucial importance for the functionality of the network. If the
transmission power is too low, connectivity of all nodes is not guaranteed. If the
power is too high, there may be too much interference, i. e., multi-user interfer-
ence may not allow for efficient use of bandwidth. Furthermore, increasing the
transmission range means a higher consumption of energy.

The topology of a wireless sensor network can be controlled by some tunable
parameters such as transmitting power and antenna directions. This process
is called topology control and extensive research has been done in this field
in recent years [2–6]. The goal is to allow each node in the network to adjust
its transmitting power individually (i. e., to determine its neighbors) so that a
good network topology can be formed. In [2] Ramanathan and Hain propose a
simple heuristic to achieve biconnectivity through the control of transmission
power. If the network is connected but not biconnected each node attempts to
do biconnectivity augmentation as follows. Every node sets a timer with a value t
that is randomized around an exponential function of the distance from the next
articulation point. If after time t the network is still not biconnected the node
increases its power to the maximum possible. Nodes closer to an articulation
point are more likely to remove the articulation and therefore given priority
using timers. To determine the biconnected components a centralized algorithm
is used, this is not a realistic option in non-static networks. The topology control
algorithm presented in [6] extends the work of Ramanathan et al., but computing
2-connected components is still not distributed.

This paper contributes towards a solution for the topology control problem:
A simple distributed algorithm to determine the bridges, articulation points,
and 2-connected components in an asynchronous network using at most 4m
messages with a length of O(lg n). Compared with the currently best distributed
depth-first algorithms, this is only an increase of n − 1 messages, these are
needed to inform each node about the 2-connected components they belong to.
The assumptions for this algorithm meet the requirements of wireless sensor
networks: The semantics of message delivery is at least once and the FIFO rule
for message delivery is not assumed (i. e., messages transmitted over a link in
the same direction can arrive at the other end of the link in any order). The
footprint of the algorithm is small: On the average a node needs to store 2m/n+
2 identifiers in addition to a few local variables. The output is available in a
distributed manner: Each link knows whether it is a bridge, each node knows
whether it is an articulation and is aware of the 2-connected components it

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

2

belongs to. Previously known algorithms either use longer messages or need
more time.

Many algorithms developed for wireless sensor networks can benefit from
the knowledge of articulations points. Connected dominating sets (CDS) have
been proposed as virtual backbones of wireless ad hoc networks [7]. All artic-
ulation points are included in every minimum CDS. Hence, identifying articu-
lations points can reduce the communication effort for determining a CDS: If
M1, . . . , Ms are CDSs of the 2-connected components and A is the set of articu-
lations of G, then

⋃
s

i=1
Mi∪A is a CDS of G (not necessarily a minimum CDS).

T. Hara proposed a replica allocation method in ad hoc networks were the bi-
connected components form groups of nodes maintaining replicas [8]. Span is a
power saving technique for multi-hop ad hoc wireless networks that reduces en-
ergy consumption without significantly diminishing the capacity or connectivity
of the network [9]. When a region of a network has a sufficient density of nodes,
only a small number of them need be on at any time to forward traffic. Obviously,
putting nodes that are articulations into sleep mode leads to a disconnected net-
work. Hence, this work also benefits from the knowledge of the articulations
and biconnected components. Further applications domains include clustering
(a cluster should be fully contained in a 2-connected component), localization of
nodes ([10]), and TDMA slot assignment algorithms.

This paper is organized as follows: Section 2 summarizes related work and
Section 3 defines the computational model used for this work. The algorithm and
its analysis is presented in Section 4. A short discussion of an implementation
of the algorithm using a real wireless sensor network concludes the paper.

2 Related Work

The presented algorithm is the first algorithm for this problem with time com-
plexity O(n) using O(lg n)-messages. The messages consist of an identifier (3
bits) and at most one additional integer. The algorithm transmits 4m messages
in the worst and 2m + n − 1 messages in the best case, m being the number
of links in the network. If message delivery is guaranteed in a single unit of
time, the algorithm terminates within 2n + d− 2 time units in the worst case (d
is the depth of the search tree). Hohberg [11] presents a distributed algorithm
for the problem at hand using 2m + n − 1 messages. The proposed algorithm
needs 2m + n − 1 units of time and is consequently considerably slower than
our algorithm. While all messages of Hohberg’s algorithm have length O(lg n),
in our algorithm m − n of the messages have only length O(1). In [12] Chaud-
huri presents a distributed algorithm for the restricted problem of finding the
bridge-connected components. While the number of messages is O(n), it uses
messages of length O(n) and it is based on the FIFO rule. An algorithm for
synchronous networks is described in [13]. The communication costs are not an-
alyzed in detail, but are high compared with our algorithm. Swaminathan and
Goldman present in [14] an incremental distributed algorithm for computing the
2-connected components in a dynamically changing graph. After a new edge is

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

3

inserted it takes O(b+c) messages of length at most O(b(b+e)) to recompute the
2-connected components, where c is the number of 2-connected components and
b and e are the numbers of nodes and edges in the resulting 2-connected compo-
nent. The algorithm is rather complex and an implementation would probably
overstrain the main memory of many of the currently available sensor nodes.

3 Computational Model

This paper assumes an asynchronous model based on message passing. Let
G(V, E) represent a connected communication network, with V being the set
of nodes and E the set of bidirectional communication links. The asynchronous
network has the following properties:

1. No two nodes in the network share memory.
2. The semantics of message delivering is at least once, i. e., there is a guarantee

that every message sent is also received, but a node may receive a message
more than once. The most straightforward realization of this semantics is
through ARQ: Upon receiving a message, a node sends an acknowledgment
to the sender. If a sender does not receive an acknowledgment within a given
unit of time, the message is sent again until the receiver confirms the receipt
of the message.

3. Message delivery times vary and cannot be predicted or bounded.
4. Messages sent over a link are not corrupted. This can be achieved by using

error-correcting codes in combination with ARQ.
5. Every message reaches its receiver after a finite amount of time.
6. Messages sent over a link may not necessarily arrive in the same order they

were sent (i. e., no FIFO rule for message delivery is assumed). This can be
a consequence of the way messages are handled at the MAC-layer.

7. Every node is aware of all its links. A node knows the identity of the link
over which a message is received. Nodes have a unique identifier and have
no global knowledge about the network.

This computational model meets the requirements of most current wireless sensor
networks. The main weakness of the model is that it does not tolerate failures of
links or nodes. In case a node fails during execution, the algorithm terminates
without computing all articulations.

4 Algorithm

The proposed algorithm is based on the distributed depth-first search algorithm
invented by Cidon [15] and corrected by Tsin [16], which does not assume the
FIFO rule. Interleaved into the determination of the depth-first tree is the cal-
culation of the articulations using a technique from the sequential algorithm for
this problem due to Tarjan [17]. The main challenge is to develop an algorithm
within the computational model that keeps the total number of messages and
their lengths as small as possible.

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

4

4.1 Informal Description of the Algorithm

The algorithm uses five types of messages and marks the links at each end
with an attribute. Initially all link ends are marked UNVISITED. The messages
Forward and Backtrack are used to explore the network in a depth-first order.
The message Visited is used to avoid sending the message Forward to a node
that is already discovered. Upon receiving the message Forward for the first
time, a node sends concurrently to its normal course Visited messages to all
neighbors except to the father of this node. Nodes receiving a Visited message
mark their end of the link as VISITED. This attempts to prevent the neighbors
from considering this node as yet undiscovered and from sending a Forward

message to it at some later time. If however due to delays, a node v1 is discovered
before a Visited message from a previously visited neighbor v2 has arrived, a
Forward message might be sent from v2 to v1. To deal with this situation, node
v1 must discard the Forward message and v2 must send a Forward message to
another undiscovered neighbor (or a Backtrack message to the father node if
all neighbors are already discovered). This behavior is enforced by the following
two rules:

– An already discovered node ignores Forward messages received over links
marked UNVISITED.

– A node receiving a Visited message over a link marked SON sends a Forward

message to another undiscovered neighbor.

As shown by Tsin in [16] the unpredictability of message delivery times can cause
other situations that must be taken care of to retain the depth-first character
of the search. Due to these complications the classical algorithm of Tarjan to
determine articulations and 2-connected components based on the so-called low

values needs to be adapted. The low value of a node is the minimum of

1. the depth of the node,
2. the depth of the nodes reachable via back-edges from this node, and
3. the low values of the sons of the node.

The challenge is to extend the depth-first algorithm such that it computes the low
values of all nodes without sending additional messages or using long messages.
Compared with the algorithm of Tsin, only one additional type of message is
needed (message Inform) and the length of some messages is increased to hold
an additional integer. The message Forward carries the depth of the current
node to a son. Upon receiving a Forward message for the first time, a node x
determines its own depth. By broadcasting its depth with a Visited message,
the neighbors of x get notified that x has been visited. This information is used
to carry out step 2 for calculating low values. In case a Visited has already been
received over a link, the node at the other end of the link has a lower depth,
and the current node will not change its low value. Therefore, the depth is
only included in Visited messages sent over links marked UNVISITED, an empty
Visited message is still sent over links marked VISITED to retain the depth-first
search. At any time a node stores the lowest of the depth values transmitted by

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

5

Visited messages. All but at most one of the Visited messages arriving at a
node come over back edges. Consider the case where a node v1 has two successors
v2, v3 in a depth-first search tree. Once the node v1 is discovered it sends a
Forward message to v2 and a Visited messages to v3. But when the search
returns to v1 a Forward message is sent to v3 (for an example consider nodes 3,
4, and 5 in Figure 1). Hence, the value carried by the Visited messages sent to
v3 must not be used for the calculation of the low value of node v3. As proved
in Section 4.3, this situation can easily be recognized. On receiving a Backtrack

message carrying the low value of a son step 3 is accomplished. Finally the low
value of a node is calculated immediately before the search backtracks to a father
node.

A block is a maximal, non-trivial connected subgraph without an articu-
lation, blocks are either 2-connected components or bridges. Articulations are
recognized upon the receipt of a Backtrack message: According to [17], if the
depth of a node is less than or equal to the low value of a son, then the node is an
articulation. In case the depth is strictly less than the low value the correspond-
ing edge is marked as a bridge otherwise it is marked CLOSED. This marks the end

of a 2-connected component. To identify the nodes that belong to 2-connected
component, the message Inform is used. Upon the detection of an articulation
point an Inform message carrying the identifier of the new block is recursively
sent over all reachable SON links except those marked CLOSED, i. e., over the edges
of the depth first search tree of the current block. Inform messages are sent con-
currently to the depth-first exploration of the rest of the network. This way, each
node will know the block it belongs to. Block identifiers can be assembled from
the id of the articulation together with the link identifier. Node identifiers are
only needed for this calculation, in practical applications block identifiers can
also be randomly generated. Inform messages are sent in parallel to exploring
the rest of the graph. The opposite ends of bridges are recognized just before a
Backtrack message is sent: If the low value is equal to the depth, the link is a
bridge and it is marked accordingly.

4.2 Formal Description of the Algorithm

All nodes execute the same algorithm, which consists of a handler for every of
the five types of messages. All nodes allocate memory for the following seven
variables:

boolean root ← articulation← false

boolean state← UNDISCOVERED
int low ← depth← MAX VALUE
List links, block ids← ∅

The variable root indicates that the node is the root of the search tree. The
variable articulation will hold the value true if and only if the node is an
articulation. All nodes are initially in state UNDISCOVERED, upon receiving the
first Forward message, the state changes into DISCOVERED. The list links stores
the state of each link of the node, there are eight different states. Initially all links

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

6

have state UNVISITED. The initially empty list block ids will finally contain the
identifiers of all blocks the node belongs to. All nodes implement the following
two routines:

procedure search

if ∃ link l s.t. l.state = UNVISITED then

l.state← SON
send new Forward(depth) over l

else if root = true then

if |block ids| = 1 then

articulation← false
end if

else

l← link in state FATHER
low ← min(depth, low)
if low = depth then

l.state← BRIDGE FATHER
end if

send new Backtrack(low) over l
end if

end procedure

procedure restart(link l)
if l.state = UNVISITED then

l.state← VISITED
else if l.state = SON then

l.state← VISITED
search

end if

end procedure

At every node the following operations are carried out when a message of the
specified type is received over link l. It is assumed, that the nodes execute the
operations corresponding to a message completely before executing the code
of the next message, i. e., incoming messages are put into a queue of bounded
length.

. Message Backtrack(son low)

if l.state = SON then

if depth <= son low then

if depth < son low then

l.state← BRIDGE SON
else

l.state← CLOSED
end if

articulation← true

generate new block id
block ids.insert(block id)
send new Inform(block id) over l

else

l.state← BACKTRACKED
end if

low ← min(son low, low)
search

end if

. Message Forward(p depth)

if state = UNDISCOVERED then

state← DISCOVERED
l.state← FATHER
depth← p depth + 1
if low = p depth then

low ← depth
end if

search

send new V isited(depth) over all
links in state UNVISITED

send new V isited() over all links
in state VISITED

else

restart(l)
end if

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

7

. Message Start

state← DISCOVERED
depth← low ← 0
root← true

search

send new V isited(depth) over all links in state UNVISITED

. Message Inform(block id)

if block id /∈ block ids then

block ids.insert(block id)
send new Inform(block id) over all links in state BACKTRACKED

end if

. Messages V isited(p depth) and V isited()

if l.state = UNVISITED || l.state = SON then

if p depth included && p depth < low then

low ← p depth
end if

restart(l)
end if

The procedure SEARCH implements the depth-first search, a node explores every
possibility of extending the search via all links before backing up to the father
node. The procedure RESTART is used to restart the search after a message has
been received out of order due to message delays. The structure of the depth-
first tree is available through the states of the links. Links marked FATHER or
BRIDGE FATHER lead to the predecessor of a node and links marked CLOSED,
BRIDGE SON or BACKTRACKED lead to successors. The ends of edges that are
bridges are labeled BRIDGE SON and BRIDGE FATHER. The algorithm is invoked
by sending the parameterless message Start to a node that will be used as the
root of the search tree. Figure 1 demonstrates an application of the algorithm.

4.3 Correctness and Analysis

To prove the correctness of the algorithm the concept of a token traveling through
the network is used. The token is introduced by the message Start. It is passed
on by the messages Forward and Backtrack, but only in the following two cases:

1. Forward passes the token to the receiving node if this node is in state
UNDISCOVERED.

2. Backtrack passes the token to the receiving node if the message is received
over a link in state SON.

First, we prove that at every point in time there is a single token in the net-
work. Every attempt to pass on the token is initiated by a call of the procedure
SEARCH. It suffices to prove that whenever a node calls procedure SEARCH it

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

8

00 33

BF

11

13

12

F BF

V

V

C

F

BF

BA

BS BS BS

44

Fig. 1. Network with 6 nodes, bold nodes are articulations and bold edges are bridges,
and node 1 is the root. The nodes are visited in ascending order of their identifiers.
The nodes are annotated with the pair depth, low and the links are annotated with
their final state. The blocks are {1, 2}, {2, 3, 4}, {3, 5} and {5, 6}.

possesses the token and since the node last received the token the node has not
passed it to another node. Initially only the root node possesses the token. If
SEARCH is called upon receiving a Forward message at a node v1, then either
the node was in state UNDISCOVERED when the message arrived and thus just
received the token, or it was in state DISCOVERED. In the latter case SEARCH is
only called when the message was received from a node v2 over a link l in state
SON. Thus, a Forward message was previously sent over l (but in the opposite
direction). Since the state of l is still SON, no Backtrack message was received
over l. This implies that this is the link over which v1 has sent its last Forward
message. If this Forward message has passed the token to v2, then v2 must have
been in state UNDISCOVERED and had not sent any message over this this link
and also would never send a Forward message over that link. But since the link
is in state SON, this is impossible. Hence, the last Forward message did not pass
the token and v1 is still in possession of the token.

SEARCH is also called upon receiving message Visited over a link marked
SON. As in the previous case, the last Forward message did not pass the token
and the node possesses the token at this time. The only other case SEARCH is
called, is when a Backtrack message is received over a link in state SON. But
then the node has just been given the token. This proves, that at every point in
time there is a single token in the network and thus, no two branches are followed
concurrently. Since every node explores every possibility of extending the search
via all links before backing up to the father node, the search employs the depth-
first order and the token traverses the network in depth-first order. This also
proves that the algorithm terminates. Figure 2 depicts all possible transitions of
states of ends of links. The states FATHER and BRIDGE FATHER are called father-
states and SON, CLOSED, BRIDGE SON and BACKTRACKED are called son-states. Note
that once an end of a link has a son- or father-state, this property holds forever
with only one exception, it is possible to transit from SON to VISITED.

In the following we prove that the algorithm correctly labels all links, i. e.,
tree-edges with father- respectively son-states and back-edges with state VISITED.
As shown above, the token traverses the network in depth-first order, i. e., the

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

9

UNVISITED

BRIDGE_SON

CLOSED

BACKTRACKED

BRIDGE_FATHERFATHER

SON

VISITED

Fig. 2. Transitions of states of ends of links.

edges the token is passed on are exactly the tree-edges. A node receiving the to-
ken for the first time - except the root node - marks that link with a father-state
and it remains in a father-state. A node marks a link as SON before sending a
Forward message. If this message passes on the token, it remains forever in a son-
state. Otherwise, the node will later receive a Visited or Forward message that
will change the label to VISITED. Furthermore, if a node in state DISCOVERED re-
ceives a Forward message over a link l, then l is already in state VISITED or will
change into that state. This proves, that the algorithm correctly labels all links.
Because of the idempotence of routine RESTART, receiving duplicate messages
of type Visited or Forward is not a problem. On the first receipt of a message
Backtrack the state of the link is changed, hence any Backtrack message not
received over a link in state SON can be safely discarded. A similar argument
proves that duplicate Inform messages also do no harm.

To prove the correctness of the algorithm it remains to prove, that the algo-
rithm correctly computes the low values. First, the case of receiving a VISITED

message over a tree-edge is considered. The depth value included in this message
must not be used to calculate the low value of the receiving node. A correction
is necessary, if and only if the depth value carried by a Forward message equals
the current lowest depth value included in all Visited messages received so far.
This only occurs if the Forward message was received over the same link as
the Visited message leading to the current lowest depth value. In this case the
current lowest depth value is equal to the depth of the father node. Since a low
value of a node is bounded by the depth of the node, the error can be safely
corrected by taking the depth of the node as the current lowest depth value, this
is just the current lowest depth value incremented by 1.

When a node is ready to send a Backtrack message to its father, there
are no links marked UNVISITED. Furthermore, the node will pass the token to
the father node and the token will never return to this node. Hence, after this
event the node receives no more Visited messages over links marked SON. Since
Visited messages are never received over links marked VISITED or FATHER, the
node receives no more VISITED messages at all. Thus, the node has received the
depth of all neighbors reachable via back edges with Visited messages and has
discarded VISITED messages received over tree-edges. Furthermore, the node
knows its own depth and the low values of all sons from the corresponding
Backtrack messages. Hence, the node is in a position to calculate its own low
value and to include it in the Backtrack message to be sent to its father. On

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

10

receiving a Backtrack message with the low value of the son, a node can decide
whether it is an articulation.

The depth-first search algorithm of Tsin transmits at most 4m − (n − 1)
messages. Our algorithm uses in addition the Inform messages, one per tree
edge. Thus, the total number of messages is bounded by 4m. In the best case,
there are only two Visitedmessages per back edge and one Forward, Backtrack,
and Inform per tree edge, summing up to 2m+ n− 1 messages in the best case.
All but m − (n − 1) messages carry 3 bits to identify the kind of the message
and an integer less than n. Visited messages sent over links marked VISITED

carry only the message identifier, there is at least one such message for every
back edge. Thus, the message length is O(lg n). In the best case our algorithm
transmits m− (n− 1) integers less than Hohberg’s algorithm, in the worst our
algorithm transmits m− (n− 1) more integers.

The time complexity is the maximum duration from sending the Start mes-
sage until the termination of the algorithm under the assumption that the time
of delivering a single message over each link is at most one unit of time. This
assumption is only made for this calculation, the algorithm operates correctly for
any finite message delivery time. In the following it is proved, that passing the
token takes at most one unit of time. For this purpose a node that passes suc-
cessfully the token with a Forward message at time t to a node v is considered.
The node v must have been in state UNDISCOVERED when receiving the Forward

message, this did not happen later than time t + 1. All Visited and Forward

messages destined for node v were sent prior to time t, the time the father of v
send the Forward message to v. Hence, at time t + 1 node v must have received
all of these messages. Thus, v knows whether it has send a Forward message
without passing the token. This yields, that at time t + 1 node v passes the
token either to a son or back to its father. Since the token is passed twice along
every tree edge, the depth first search needs 2n− 2 units of time. In the worst
case when the graph is 2-connected sending the Inform messages is started after
the depth-first search has finished. In this case our algorithm needs d additional
units of time (d is the depth of the search tree). In total the algorithm requires
no more than 2n− 2 + d units of time. This is a considerable improvement over
previous algorithms. Using induction, it is straightforward to prove that the sum
of the lengths of the lists block ids of all nodes is at most 2(n−1). This bound is
attained for trees only. Hence, on the average there are about two identifiers in
each list. Furthermore, on the average each node has 2m/n neighbors, the state
of each can be safely stored in one byte.

5 Conclusion

This paper presented a novel distributed algorithm for computing bridges, artic-
ulations, and 2-connected components of undirected graphs in time O(n) using
at most 4m messages of length O(lg n). In order to improve this result either a
more efficient distributed depth-first search algorithm is needed or a completely
different approach must be taken (i. e., not based on depth-first search). The al-

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

11

gorithm is suitable for usage in many application of wireless sensor networks due
to its short messages and its robustness, i. e., it does not assume a FIFO rule
for message delivery and is immune from message duplication. The algorithm
has been successfully implemented and tested on a real wireless sensor network
consisting of ESB and ECR nodes of the ScatterWeb platform developed at the
FU Berlin [18]. Each node was equipped with 2 kByte RAM and 64kByte EEP-
ROM and with a wireless communication device working at 19200 Bits/s. The
experiment was conducted using 24 nodes with varying topologies.

References

1. Bettstetter, C.: On the minimum node degree and connectivity of a wireless mul-
tihop network. In: Proc. ACM MobiHoc, ACM (2002) 80–91

2. Ramanathan, R., Rosales-Hain, R.: Topology control of multihop wireless networks
using transmit power adjustment. In: IEEE INFOCOM 2000. (2000) 404–413

3. Borbash, S., Jennings, E.: Distributed topology control algorithm for multihop
wireless networks. In: Proc. Int. J. Conf. on Neural Networks. (2002) 355–360

4. Lloyd, E., Liu, R., Marathea, M.V., Ramanathan, R., Ravi, S.: Algorithmic aspects
of topology control problems for ad hoc networks. In: Proc. of the 3rd ACM Int.
Symposium on Mobile ad hoc Networking and Computing. (2002) 123–134

5. Liu, J., Li, B.: Distributed topology control in wireless sensor networks with asym-
metric links. In: Proc. of IEEE Globecom 2003. (2003) 1257–1262

6. Tseng, Y., Chang, Y., Tzeng, B.: Energy-efficient topology control for wireless ad
hoc sensor networks. J. of Information Science and Engineering 20 (2004) 27–37

7. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In: Proc. of the 3rd ACM Int. Workshop on Discrete
algorithms and methods for mobile computing and communications. (1999) 7–14

8. Hara, T.: Replica allocation methods in ad hoc networks with data update. Mobile
Networks and Applications 8 (2003) 343–354

9. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient co-
ordination algorithm for topology maintenance in ad hoc wireless networks. Wire-
less Networks 8 (2002) 481–494

10. Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R.,
Anderson, B.D.O., Belhumeur, P.N.: A theory of network localization. To appear,
IEEE Transactions on Mobile Computing (2006)

11. Hohberg, W.: How to find biconnected components in distributed networks. Jour-
nal of Parallel and Distributed Computing 9(4) (1990) 374–386

12. Chaudhuri, P.: An optimal distributed algorithm for computing bridge-connected
components. Computer Journal 40(4) (1997) 200–207

13. Thurimella, R.: Sub-linear algorithms for sparse certificates and biconnected com-
ponents. Journal of Algorithms 23(1) (1997) 160–179

14. Swaminathan, B., Goldman, K.: An incremental distributed algorithm for comput-
ing biconnected components in dynamic graphs. Algorithmica 22 (1998) 305–329

15. Cidon, I.: Yet another distributed depth-first search algorithm. Inform. Process.
Lett. 26(6) (1988) 301–305

16. Tsin, Y.H.: Some remarks on distributed depth-first search. Inform. Process. Lett.
82(4) (2002) 173–178

17. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal Com-
puting 1 (1972) 146–160

18. ScatterWeb. http://www.scatterweb.net (2006)

The original publication is available at www.springerlink.com - DOI 10.1007/11963271_15

12

