Enabling the usage of formal methods by
creation of convenient tools.

Boris Gruschko, Friedrich H. Vogt, and Simon Zambrovski

Hamburg University of Technology

Abstract. Creation of formal specifications is being considered a relief
for the difficulties of inception and construction of distributed systems.
Numerous formal methods exist for the purpose of description of dis-
tributed systems and protocols. The creation of formal specifications
for these systems lacks the extensive support by tools vendors. This re-
sults in lack of sophisticated tools, which help the developer to overcome
the initial training investment, shallowing the learning curve. Thus, the
development of formal specification for the systems under construction
stays an expensive undertaking, which lacks the immediate results, im-
portant for the overall acceptance of formal methods by the industry. In
this paper we describe a plugin for the Eclipse IDE, developed to sim-
plify the task of authoring formal specifications in the TLA+ environ-
ment. This plugin provides features, expected from an IDE for a common
programming language, such as syntax highlighting, autocompletion and
execution assistance.

1 Introduction

The need for tooling support for the authoring of formal specification became
apparent, after the authors tried to write a simple example specification in the
ASCII form of TLA+[6]. The most time consuming task was not the formulation
of ideas behind the specification, but the syntactical correctness of the produced
ASCII form. Without the support of tools, which would check the syntax, while
the specification was being written, the roundtrip consisting of creation of the
ASCII form, type setting and model checking, became too long for the immediate
feedback about the syntactical correctness of the specification. Tools allowing for
easier development of TLA+ specification are available for the Emacs[3] envi-
ronment. Nevertheless, it is important, to provide a tool set for the environment,
the specifier is accustomed to.

The described plugin is an interface between two tool sets. One of them are
the TLA+ Tools[1] provided by Microsoft Corporation. TLA+ Tools provide a
set of tools for publishing and verification of TLA+ specifications prepared in
form of ASCII files. The other tool set is the Eclipse Platform|[2]. It provides a
generic foundation for the development of IDEs for any programming language.
Although TLA+ is not a programming language as is, there are numerous simi-
larities between the processes of authoring a TLA+ specification and a program.

Eclipse Platform has been chosen for the project, because of the numerous
prefabricated features which were considered needed for the TLA+ authoring
tool. These features are exposed to plugins via clearly defined extension points.
Some of the main extension points provided by Eclipse, are convenient text
editors, with support for configurable syntax highlighting and autocompletion
and programmable execution support. The use of Java[4] as execution platform
by Eclipse was another reason for it’s choice for the project. TLA+ Tools are
implemented in Java too, which makes the integration with Eclipse a seamless
one.

2 Plugin usage

TLA+ Tools provide utilities for typesetting and model checking of TLA+ spec-
ifications. It is a collection of command line utilities written in Java language.
Although powerful, these tools do not provide a convenient interface for the spec-
ifier. These tools are helpful for the usage in conjunction with automation tools
and scripts, but tedious for human usage. The plugin maps tools provided by
the Eclipse Platform for the authorship of conventional programs, onto similar
concepts of TLA+ Tools.

2.1 Development environment setup

To allow the usage of the plugin,
Eclipse Platform version 3.0 or later

is needed. Eclipse Platform itself de- [IEeem LERX
pends on Java Runtime Environment, et =] & | Sentex Analyser
. # Generd TLA+ module lacations are searched for modules on syrtactical analysis.
or Java SDK. Both products are avail- | *&,,.. e T T
bl f f h + Help ‘Chgruschkottestitlaitlasany\StandardModules|
able 1Iree oI C arge. :;::::\ﬁudate

3

The described plugin provides the | e
functionality needed to setup the de- |5
velopment environment for the author-
ing of TLA+ specifications. The in-

add... | Remove

stallation of the plugin is performed | & sy oo

¥ Run analysis

by the means of standard Eclipse up-
date mechanism via an update site. Af- sates
ter being installed the plugin has to e

be configured, to allow for access to L o

standard TLA+ modules such as Nat-
urals. This step is being performed via
Eclipse Preferences window, as shown Fig. 1. Preferences window
in Fig. 1.

2.2 Specification authoring

Main application of the described plugin is the development of TLA+ specifica-
tions. This involves a typical development roundtrip similar to the construction

of a normal program. Thus the plugin is mainly constructed to shorten this
development cycle. Using the TLA+ Tools, the roundtrip would consist of the
specifier creating an ASCII version of the specification, then executing the syntax
checker and receiving an output analog to the one shown in Listing 1.1. After re-
viewing the output, the specifier has to find the erroneous piece of specification,
fix it and to execute the next iteration of the roundtrip.

x*x%x Krrors: 1
line 8, col 21 to line 8, col 21 of module DieHard
Could not find declaration or definition of symbol i’

Listing 1.1. Parser output

To shorten this cycle, our plugin provides eager
syntax checking. The syntax check will be executed
every time the user saves his documents. The same g Typeok = /\ small Vi (0..3)
error, which produced the output in Listing 1.1, will J\ big \in (0..5)
cause the plugin to underline the erroneous docu-
ment fragment, as shown inf Fig. 2. Since the checks
are being run in background, the developer of the
specification gets an immediate feedback about the
syntactical incorrectness of his specification and can
react to it.

Further contraction of development roundtrip
can be achieved by using the autocompletion feature of the plugin. While the
first characters of a token are being typed by the user, the plugin searches it’s
internal memory for the constructs, which would match the presented charac-
ters. If a match is found, the user will be presented with a convenient selection
panel. This feature shown in Fig. 3 provides a way, to simplify the process of
learning the syntax of TLA+.

Fig. 2. Highlighted syn-
tax error

2.3 Model checking

TLA+ Tools provide model checking capability for

specifications written in the ASCII form of TLA+.

This feature maps onto the execution run of a con- _...; v: 0.3
ventional program. Eclipse provides a unified in- %" W
terface for this kind of operations. This feature of
Eclipse allows a plugin to describe the needed con-
figuration for an execution run, to start it and to
display the results of an execution. All options sup-
ported by TLA+ Model Checker are integrated into
Eclipse Run Configuration. (see Fig. 4).

Fig. 3. Autocompletion

3 Further Work

TLA+ Tools provide a pretty printer

TLATEX- a program generating La-

TeX[7] formatted output. This fea- [&
ture is useful for providing examples |7 =" @
of TLA+ in publications. There are [
some ongoing efforts, to provide a La- (
TeX Environment for the Eclipse plat-
form. Our further efforts will be di-
rected towards the in integration of
TLA+ Pretty Printer into our Eclipse
plugin. In addition some effort may be
spent on provision of IntelliSence[5] re-
sembling style of autocompletion. v | o | e

ame: [DiFardConiiguration

nche) Main (8 Argimerisd £ Comman

I Dentt check deadack.

4 Conclusion

Eclipse is a widely used and accepted Fig. 4. Model Checker Options
platform for IDE development. Envi-

ronments for many programming lan-

guages exist on the basis of Eclipse.

This leads to a wide adoption of the

Eclipse Platform and a large user base experienced in the basic concepts of it.
The presented plugin provides a possibility to develop and check TLA+ specifi-
cations in the Eclipse environment. The main emphasis of the development was
the preservation of user interface concepts proposed by the Eclipse Platform. By
this means, the specifier is relieved of the task of learning a new development
environment. A specifier with experience in usage of the Eclipse IDE will be able
to find the needed functions in a rapid manner. Therefore he can concentrate on
the task at hand and start developing the specifications more rapidly. This leads
to the possibility of a faster adoption of formal methods by the industry.

References

1. Microsoft Corporation. TLA Tools. Available at
http://research.microsoft.com/research/sv/TLA _Tools/, 2005.

2. Eclipse Foundation. Eclipse platform. Available at http : //www.eclipse.org/, 2005.

Free Software Foundation Inc. Emacs. Available at http

/ Jwww.gnu.org/software/emacs/emacs.html, 2005.

Sun Microsystems Inc. Java. Available at http://java.sun.com/, 2005.

IntelliSence. IntelliSence. Available at http : //www, 2005.

Leslie Lamport. Specifying Systems. Addison Wesley, 2003.

Leslie Lamport. LaTeX. Available at http : //www.latex — project.org/, 2005.

@

N ot

