
Implementing Web Service Protocols in SOA: WS-Coordination and
WS-BusinessActivity

Friedrich H. Vogt
Hamburg University of Technology

Simon Zambrovski
Hamburg University of Technology

Boris Gruschko
Hamburg University of Technology

Peter Furniss
Choreology Ltd.

Alastair Green
Choreology Ltd.

Abstract

Web Service protocol standards should be unambiguous
and provide a complete description of the allowed behav-
ior of the protocols’ participants. Implementation of such
protocols is an error-prone process, firstly because of the
lack of precision and completeness of the standards, and
secondly because of erroneous transformation of semantics
from the specification to the final implementation. Apply-
ing the TLA+ paradigm we first consider the protocol on
an abstract level. Safety properties taken from real world
scenarios are compared to the facilities of the protocol. As
result, we identified some limitation of applicability of the
WS-BA protocol to abstract application use cases, modelled
from the real world scenarios. These limitations are an
omission of possible activities seen in the real world. Fur-
ther, WS-C and WS-BA make assumptions about the inter-
nal structures of the participants, violating SOA paradigm.
The former error could be detected by the use of formal
methods. The latter can be circumvented by a sophisticated
implementation strategy. The proposed strategy of imple-
menting WS-Coordination and WS-BusinessActivity allows
non-intrusive integration of the transactional framework,
considering SOA requirements. This paper describes the
results of analysis and some design decisions taken during
the proof-of-concept implementation of WS-C and WS-BA
frameworks.

1 Introduction

SOAP[6] based Web Services are seen as a solution
for some interoperability problems of heterogenous dis-
tributed systems. This fact leads to rapid development
of large number of protocols using SOAP conventions for
message exchange. Transaction support is an important
property of distributed systems. In the area of transac-
tional Web Services, several protocols or groups of proto-

cols have been proposed. One such set consists of the three
protocols WS-Coordination[2], defining an extensible coor-
dination framework, WS-AtomicTransactions[3], leverag-
ing WS-Coordination(WS-C) for use with systems aware
of ACID properties and finally, WS-BusinessActivities [4],
designed for support of long-lived activities. The WS-C
framework can be used with different coordination proto-
cols, including the WS-AT and WS-BA specifications.

In this paper we describe our experience with imple-
menting WS-C and WS-BA specifications and focus on
guarding correctness of implementation. For this purpose
we show how formal methods can help implementing safe
systems. We also describe the decisions made during the
design of proof-of-concept implementation and strategies
adopted to deal with areas not precisely defined in speci-
fications.

2 General approach

We separate the development process in four phases: the
definition, the formal specification, the implementation and
the validation.

First we choose the protocol stack according the appli-
cation requirement. This requirement is stated in safety
properties. Second we analyse given specifications. Am-
biguity or lack of information found in specifications un-
dermines the confidence level. To give a firm discussion
base we use abstract models of the protocol behaviour.
Those models are result of the specification phase. In case
of WS-BusinessActivity and WS-Coordination the protocol
state tables are not clear enough to serve as implementation
model. Formal specifications are used to clarify issues in
question. Using TLA+[10] we can check the consistency of
such abstract models. This approach was inspired by formal
modelling of WS-AtomicTransactions protocol described
in[8]. Given the possibility to map the state transitions to
exchanged messages, the generation of state graph of the
system provides us with all possible sequences of messages

1



generated during an exchange. Because WS-BA only de-
fines the behavior and message exchange of coordination
protocols we are only interested in those messages.

For the implementation of the protocol we found the for-
mal specification is a prerequisit for reaching the required
level of confidence. In addition, it is more natural for the
developer to handle the abstractions of TLA+ specifications
than state transition tables. In [9] the consruction of a TLA+
specification for the WS-BA protocol is described as ef-
fortless, for an expert in the field of formal specifications.
The time needed to construct the specification that checked
safety properties, has been reported to be in the range of two
hours.

To finally check the behavior of the resulting implemen-
tation we can use the validation approach proposed in [12]
checking the message traces. To simplify the properties of
traces to be checked the TLA+ specification can be used as
an abstract input.

In following we give a short specification overview then
discuss the ambiguities and areas of omission in the models,
describe our proposals and finish the paper with validation
approach followed by a conclusion.

3 Definitions

The WS-Coordination specification describes three roles
for the communicating parties. The overview of the de-
fined system model can be depicted from Fig. 1. AnIni-
tiator role is played by the entity aiming for a consen-
sus among multiple Web Services. TheParticipant role
is played by an entity offering some service that needs
to be coordinated during the interaction. TheCoordina-
tor role is played by an entity coordinating the commu-
nicating parties to achieve the consensus. The specifi-
cation also introduces the message exchange needed for
the ActivationandRegistrationof the participants. In the
Activation phase, theCoordinationContext is ac-
quired from theCoordinator’s Activation Service. The
CoordinationContext, a logical abstraction identify-
ing the interaction is also defined in WS-C. It is attached to
business messages being exchanged between the communi-
cating parties, embedded in a SOAP header. In theRegistra-
tion phase, the participant Web Service signals its interest
on the mutual outcome of the coordinated interaction. Dur-
ing this phase the coordination protocol is negotiated and
endpoint addresses ofCoordinator’sandParticipant’spro-
tocol services are exchanged, forming a logical connection
betweenCoordinator and Participant. The message flow
over this logical connection depends on the coordination
protocol being used and is not part of WS-C specification.

The WS-BusinessActivity specification defines two co-
ordination protocols. These are the Business Activity With
Coordinator Completion (BACC) as shown in Fig. 2 and

Business Activity With Participant Completion (BAPC).
BACC and BAPC are two-phase protocols, but differ from
classic 2PC protocol [1] in the following manner. The first
phase is used for exchange of business messages between
the parties. In case of BAPC, the end of the first phase
occurs when theCompleted message is sent fromPar-
ticipant to Coordinator, indicating that theParticipant has
completed processing and stored all data persistently. The
second phase is used for confirmation or negation of results
achieved during the first phase.

The BAPC is designed for activities in which the deci-
sion about transition from the first to the second phase can
be made by theParticipant. The BACC is designed for ac-
tivities in which this decision is made byCoordinator.

4 Specification Analysis

The work on the proof-of-concept WS-BA implemen-
tation was preceded by the reading and discussion of the
specification itself. In this section we provide our insights
and comments produced during the internal discussion of
the specification useful for the understanding of the written

ParticipantCoordinator

createCoordinationContext()

register()

App2

Activation
Service

Registration
Service

App1

(Initiator) (Web Service)

Figure 1. System overview (Specification)

Figure 2. BACC

2



specification by a team about to implement it.

4.1 Application models

Concerning on formal analysis of the WS-C and WS-BA
specifications using TLA+ paradigm led to review of ap-
plicability of the protocols to the business scenarios taken
from the real world. We came to a conclusion that WS-
BA can only support ”do-compensate”[7] behavior patterns
for theParticipants. In the ”do-compensate” model the con-
firmed state is identical to the provisional state. In other pat-
terns such as ”provisional-final” and ”validate-do” behavior
patterns[7], the participant establishes a (provisional)”com-
plete” state of the application data that will be changed to
the confirmed state if and when theClose message is re-
ceived. The fact that in WS-BA theClosing state has no
state transition to theFaulting state means that no ac-
tion on data can be performed while the system is in that
state. WS-BA permits a transition to theFaulting state
from theCompensating state since it recognises that any
change of application state can sometimes turn out to be
impossible. Supporting the other patterns by adding the
Closing to Faulting state transition would result in a
wider applicability of WS-BA to natural scenarios, espe-
cially those where the release of application data in its final
state will have wider consequences. In terms of service-
oriented design the behavior supported by WS-BA coordi-
nation protocols violate the SOA paradigm, prescribing the
internal behavior of the system. This prescription results
from the negotiation of the coordination protocol, where the
participant commits himself to an internal behavior pattern
supported by the negotiated protocol.

4.2 Analysis Results

WS-Coordination and WS-BusinessActivity are proto-
col frameworks designed for usage in the SOA environ-
ment. Nevertheless the protocol authors made some deci-
sions about the internal buildup of communication parties
as described in [5]. The tightly-coupledCoordinator and
Initiator as well asParticipantencapsulating both business
and transactional logic are examples of that. Our under-
standing of WS-* protocols as building blocks of distributed
system led to different view of the system than described in
[5]. Specifically our architecture was shaped by consider-
ation of seamless integration of WS-C and WS-BA frame-
works in existing WS-Scenarios minimizing the adaptation
efforts. For this purpose we introduce the transactional
middleware separating the coordination from the business
logic as shown in Fig. 3. The function of the transactional
middleware is the management of the coordination context
and coordination protocol execution. By assuming this as-
signment, the transactional middleware allows for an easier

Client implementation. (The addition of the transactional
middleware brings our WS-BA implementation closer to
the architecture described in WS-AtomicTransactions[3],
where the WS-AT Completion protocol is analogous to the
message exchanges between the client and the middleware
described below.)

4.2.1 Initiation and Termination

The WS-C specification defines a message flow that has to
be understood by all communication parties. To allow non-
intrusive integration of WS-C framework with existing Web
Services and their clients we introduce mechanisms for en-
abling and disabling WS-Coordination support on demand.
For this purpose the model defined in WS-C specification is
extended with a new role calledTransactor. TheTransac-
tor accepts four different messages fromInitiator that deal
with initiation and termination of coordination support, as
well as lead to the final coordinated outcome of the protocol
in use. Transactional support for interactions between Web
Services and their clients begins when theInitiator sends a
Begin message toTransactor. Similarly, to end the trans-
actional support theEndmessage is sent toTransactor. The
Transactorform the first part of transactional middleware as
seen in Fig. 3.

Proxy

Service

ParticipantCoordinator

createCoordinationCtx()

register()

Activation

Service

Registration

Service

Transaction

Service

Proxy

Client
Transactor

Decision

Engine

App2App1

(Initiator)

(Web Service)

Middleware

Figure 3. System overview(Implementation)

4.2.2 Delivery of decisions

In both WS-BusinessActivity protocols the participant
reaches theCompleted protocol state. In the BAPC pro-
tocol, theParticipant reaches this state after it has sent the
Coordinator a Completed message. According to the
BACC (see Fig. 2) protocol, theParticipant reaches this
state after receiving theComplete message from theCo-
ordinator, and having successfully progressed through the
Completing state. In theCompleted state the logic on
the participant side has recorded all its business data and

3



expects a decision from theCoordinatorabout further pro-
tocol progression, which should eventually lead to protocol
instance termination. In general, however, theCoordina-
tor has no ability to understand the semantics of the busi-
ness messages being exchanged between the client and the
Web Service. In particular it has no knowledge about the
business process flow. This knowledge is only available to
the client acting asInitiator. This means theCoordinator
cannot decide by itself which message to send to thePar-
ticipant after theParticipant has reached theCompleted
state. For this purpose we extend theTransactorby intro-
ducing the ability to transmit a decision of the client to the
Coordinator. This decision is business flow dependent and
enables theCoordinator to send the appropriate coordina-
tion protocol message to theParticipant. For this to happen,
the Transactorcan receive two messages from theInitia-
tor, namely aConfirm message, and aCancel message.
This decision indication received by theTransactoris made
available to the tightly-coupledCoordinator. Also impor-
tant to mention here is that theseConfirm andCancel
messages include the endpoint address of the Web Service
(to which the earlier business messages were sent) so that
the decision by the client can be associated with the partic-
ular Web Service. The transactional middleware consists of
the Transactorand theCoordinator, which is thus decou-
pled from theInitiator.

4.3 Specification Omissions

4.3.1 Registration

The WS-Coordination specification prescribes that thePar-
ticipant register with theCoordinator if it intends to par-
ticipate in a coordinated business activity. However, the
Register message does not contain enough information
for the Coordinator to determine which business activity
the Participant wants to take part in. It is possible to re-
solve this lack of information in several ways. For example,
theCoordinatorcould provide distinctRegistration Service
endpoint addresses for each business activity. We chose an-
other approach and extended theRegister message in-
teraction by adding the missing information in the form of
identification information of theParticipant. We also pro-
vide the address of the business Web Service endpoint in
the Register message. Given the possibility of aPar-
ticipant taking part in several business activities simultane-
ously, our extension of theRegister response mes-
sage allows its assignment to the corresponding business
activity. The CoordinationContextIdentifier,
defined in WS-C specification for identifying the coordi-
nated interaction uniquely, has been used as the exten-
sion for both messages. An example emphRegister mes-
sage with the identifier is shown in Listing 1 in which the
CoordinationContextIdentifier is provided in

wsu:Identifier element.

<w s c o o r : R e g i s t e r
xmlns :wscoor=” . . . ” xmlns:wsa=” . . . ”

xmlns:wsu=” . . . ”
>

<w s c o o r : P r o t o c o l I d e n t i f i e r>
h t t p : / / schemas . xmlsoap . org / ws /2004 /01
/ wsba /
Bus inessAgreement
W i t h P a r t i c i p a n t C o m p l e t i o n

< / w s c o o r : P r o t o c o l I d e n t i f i e r>
<w s c o o r : R e q u e s t e r R e f e r e n c e>

<wsa:Address>
h t t p : / / example . org / Reques t

< / wsa :Address>
< / w s c o o r : R e q u e s t e r R e f e r e n c e>

<w s c o o r : P a r t i c i p a n t P r o t o c o l S e r v i c e>

<wsa:Address>
h t t p : / / example . org / BAPCPort

< / wsa :Address>
< / w s c o o r : P a r t i c i p a n t P r o t o c o l S e r v i c e>

<w s u : I d e n t i f i e r>
h t t p : / / example . org / ? i d =1

< / w s u : I d e n t i f i e r>
<ws a :Endpo in tR e fe rence>

<wsa:Address>
h t t p : / / example . org / B u s i n e s s P o r t

< / wsa :Address>
< / ws a :Endpo in tR e fe rence>

< / w s c o o r : R e g i s t e r>

Listing 1. Register Message

4.3.2 Coordination Protocols Extension

Both theCoordinatorand theParticipant can hold several
coordination protocol instances simultaneously. The WS-
BusinessActivity specification does not provide enough in-
formation to differentiate between coordination protocolin-
stances. Similar to the case ofRegister andRegister
response messages we include the identification element
in the messages to allow the receiving party unique assign-
ment between the coordination messages and corresponding
protocol instances.

5 Implementation

The separation ofCoordinator from Initiator has been
enabled by usage of aProxy System. TheProxy Systemcon-
sists of two parts: aProxy Clientdeployed on theInitiator
side andProxy Serviceas a part of proposed transactional
middleware. TheProxy Clientis realised as a SOAP handler
intercepting the messages, redirecting them to theProxy

4



Service, which is a part ofTransactor. The initial creation
of CoordinationContext is ensured on the middle-
ware, which augments the rerouted business messages with
CoordinationContext of corresponding business ac-
tivity.

Our definition of theParticipant differs slightly from
that described in WS-C specification. We describe only
the transactional component of the business Web Service
as theParticipant. Since theParticipant and the business
Web Service have different roles, the former being respon-
sible for coordination, and the latter for business function-
ality, it is good design to keep them separate. On the other
hand, coupling between the two roles is required for mutual
exchange of information about their internal states, since
proper progression of coordination depends on these states.
There are several approaches for a business Web Service to
inform theParticipant, or for theParticipant to inform the
business Web Service about the changes of their respective
internal states. Our approach of loose-coupling of the busi-
ness Web Service and theParticipant is based solely on the
observation of the in- and outbound communication of the
business Web Service. UsingDecision enginelinked with
a SOAP handler intercepting the messages of the business
Web Service theParticipantconcludes the change of inter-
nal state of the business Web Service. For this purpose the
Decision Engineis equipped with a preconfiguredRule Set
constisting of XQuery[13] predicates. The recorded mes-
sages are written intoTrace[12] data structure, which is
used as container forRule Setevaluation. Further discus-
sion of the applicability of the proposed approach and the
Rule Setis beyond the scope of this paper and is a sub-
ject of further research. The concept ofDecision Engine
minimizes the effort needed to adapt an existing business
Web Service for usage with WS-BA to writing of a config-
uration file containing the mappings between the coordina-
tion and business expressions. For simulation purposes a
common travel agency scenario has been implemented. A
complete example interaction depicting the components de-
scribed previously is shown in Fig. 4.

We packaged our WS-BA framework implementation as
an J2EE application, that has been deployed in two JBoss
Application Servers. Apache Axis 1.2 has been used as Web
Service toolkit. For the usage of TLA+ language an Eclipse
IDE plugin has been developed[14].

6 Validation of the Implementation

Validation of the implementation of a given protocol pro-
vides the confidence in the correctness of decisions met dur-
ing the implementation process. It is hard to verify an im-
plementation of the presented system. The mathematical
validation of the implementation seems unfeasible, due to
the complexity of the matter at hand. Nevertheless, we show

Client Middleware Participant

begin()

book()

book()

register()

registerResponse()

bookResponse()
bookResponse()

cancel()
compensate()

completed()

compensated()

end()

Business 

Web 

Service

book()

bookResponse()

cancelBook()

cancelBookResponse()

Message 
generated 

by Decision 
Engine

Message 
containing

Coordination 
Context

cancel() 
containing 
business 
endpoint 
address

Business 
messages 

Figure 4. Sample interaction scenario

a way to acquire an assertion about the correctness of the
implementation. To test our implementation we used the
method suggested in [12]. The proposed approach allows
separation of the implementation details from the testing of
the overall compliance with the WS-BA specification. The
Traceswhich are used for theDecision Engineare at the
same time being stored for later evaluation.

As proposed in [12] the evaluation of theTracesdoes
not prove the definitive compliance of the implementation
with the WS-BA specification. It merely guarantees that no
specification violation has been observed. The validation
relies upon a set of predicates which provide a description
of the constraints laid upon the communication by the WS-
BA specification.

The main effort during the proposed validation is needed
to be applied to the creation of the predicates set. This set
is specific to the protocol which implementation is to be
tested. Thus there is no possibility to reuse a created pred-
icates set for testing the implementation of another proto-
col. A useful base for the creation of the predicates set is a
formal specification of the state transitions of the protocol.
From this specification a comprehensive set of predicates
can be derived. Another advantage of using a formal speci-
fication is the avoidance of errors in the predicates set.

5



7 Conclusion

The formal analysis of the WS-Coordination and WS-
BusinessActivity specifications led to determination of am-
bigous areas in the described frameworks. The TLA+ par-
adigm helped us perform this analysis. During the analy-
sis phase we uncovered a limitation of the specifications in
terms of applicability to real world scenarios. In our un-
derstanding of SOA this limitation violates the black box
approach to the behaviour of the participants. We accepted
this limitation for the cause of overall interoperability of
our implementation. Further we discovered a structural de-
pendancy between introduced entities. This also violates
the SOA paradigm. This dependancy could be resolved by
sophisticated design of the WS-BA framework implemen-
tation. The introduction of transactional middleware forms
a loosly-coupled transactional system according to WS-C
and WS-BA specifications. To allow for the mapping be-
tween incoming messages and their corresponding BAs we
took advantage of the extensibility of elements descibed
in WS-C and WS-BA specifications. The easy integration
into existing Web Service scenarios is enabled by the usage
of Proxy Systemand Decision Engine, whose functional-
ity is described in the Sec. 5 The communication protocol
defined between theInitiator andTransactoris needed to
guarantee the loose-coupling of system components. The
insights gained during the proof-of-concept implementation
emphasize our analysis and design decisions. The proof-of-
concept implementation has been exposed to an extended
validation phase using data gathered during the test runs of
an example scenario. The overall experience shows, that the
usage of formal methods during an implementation of Web
Service protocols in SOA helps clarify the protocols under
consideration and raises the confidence of the implementors
into their understanding of the protocols.

References

[1] P.A. Bernstein and E. Newcomer.Principles of Trans-
action Processing. Morgan Kaufmann Publishers,
1997.

[2] Luis Felipe Cabrera, George Copeland, William Cox,
Max Feingold, Tom Freund, Jim Johnson, Chris Kaler,
Johannes Klein, David Langworthy, Anthony Nadalin,
David Orchard, Ian Robinson, John Shewchuk, Tony
Storey, and Satish Thatte. Web Services Coordination
Framework (WS-Coordination), September 2003.

[3] Luis Felipe Cabrera, George Copeland, William
Cox, Tom Freund, Johannes Klein, David Langwor-
thy, Ian Robinson, Tony Storey, and Satish Thatte.
Web Services Atomic Transaction Framework(WS-
AtomicTransaction)), Januar 2004.

[4] Luis Felipe Cabrera, George Copeland, William
Cox, Tom Freund, Johannes Klein, David Langwor-
thy, Ian Robinson, Tony Storey, and Satish Thatte.
Web Services Business Activity Framework (WS-
BusinessActivity), Januar 2004.

[5] Luis Felipe Cabrera, George Copeland,
Jim Johnson, and David Langworthy. Co-
ordinating Web Services Activities with
WS-Coordination, WS-AtomicTransaction,
and WS-BusinessActivity. Available at
http://msdn.microsoft.com/webservices/default.aspx,
January 2004.

[6] R. Chinnici, M. Gudgin, J.-J. Moreau, and S. Weer-
awarana. SOAP Services Description Language
(WSDL) 1.2, March 2003. status : W3C Working
Draft , http://www.w3.org/TR/wsdl12/.

[7] Peter Furnis and Alastair Green. Choreology Ltd.
Feedback to the authors of WS-Coordination, WS-
AtomicTransaction and WS-BusinessActivity. Avail-
able at http://www.choreology.com/downloads/, May
2004.

[8] James E. Johnson, David E. Langworthy, Leslie Lam-
port, and Friedrich H. Vogt. Formal specification of
a web services protocol.Electronic Notes in Theo-
retical Computer Science, Volume 105, 10 December
2004, Pages 147-158, December 2004.

[9] James E. Johnson, David E. Langworthy, Leslie Lam-
port, and Friedrich H. Vogt. Formal specification of a
web services protocol.to appear in Elseview Science,
January 2005.

[10] Leslie Lamport.Specifying Systems. Addison Wesley,
2003.

[11] Eric Newcomer and Greg Lomow.Understanding
SOA with Web Services. Addison Wesley Professional,
2004.

[12] Marcus Venzke. Specifications using XQuery Expres-
sions on Traces.Mario Bravetti, Gianluigi Zavattaro
(Eds.): Proceedings of the First International Work-
shop on Web Services and Formal Methods, February
2004.

[13] W3C. XQuery: the W3C query language
for XML – W3C working draft. Available at
http://www.w3.org/TR/xquery/, 2001.

[14] Simon Zambrovski and Boris Gruschko.
TLA+ Eclipse IDE Plugin. Available at
http://www.techjava.de/, 2004.

6


