
WS-FM 2004 Preliminary Version

Specifications using XQuery Expressions on
Traces

Marcus Venzke 1

Telematics Department
Technische Universität Hamburg-Harburg

Hamburg, Germany

Abstract

This paper contributes to the interoperability of web services by proposing the flex-
ible specification technique SXQT in conjunction with the automatic validation,
a straightforward approach for detecting non-conformance. SXQT allows different
levels of abstraction by specifying individual requirements on a web service’s proto-
col, i.e. its SOAP messages and behaviour including SOAP modules. The automatic
validation detects non-conformance by comparing occurring message sequences with
the protocol’s specification.

Key words: Automatic Validation, Choreography,
Specification Technique, SXQT, Web Services, XQuery

1 Introduction

Specifications play a critical role for the interoperability of web service appli-
cations. They describe the protocol between a web service provider and its
clients (web clients). The independent implementation in different enterprises
requires specifications to be precise to allow hazard free interworking, but still
leaving room for a broad range of implementations.

The common Web Service Description Language (WSDL) [16] only al-
lows sparse specifications. It is restricted describing type and structure of ex-
changed messages. Expected protocol behaviour, such as required orderings
of messages, cannot be specified, but is crucial for successful interworking.

Protocol behaviour can be specified in BPML [2] and BPEL4WS [20].
These specify web services in great detail, allowing specifications to be exe-
cuted. In that sense they are more programming than specification languages.
Implementers are restricted to compile specifications into implementations,
not having room for design decisions (cp. [17]).

1 Email: venzke@tu-harburg.de
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Venzke

BPML and BPEL4WS as well as WSCL [3] and WSCI [1] do not al-
low specifying SOAP modules [12]. SOAP modules are general purpose, in-
frastructure related protocols, whose data units are conveyed in the SOAP
header. Examples are the WS-* protocols [18]. For developing a web service’s
protocol, application specific parts (conveyed in SOAP body) are composed
with required SOAP modules [5]. With the specification techniques stated
above these cannot be specified, because their models are based on the level
of WSDL’s port types, abstract interfaces that are independent of SOAP. Thus
there is no notion of the SOAP header and its content cannot be specified.

This paper proposes the specification technique SXQT that allows speci-
fying application specific protocols, SOAP modules and relations in between.
Different levels of abstraction can be chosen for only specifying those require-
ments needed for interworking between a web service provider and its clients.

Having precise specifications there is still the risk of incompatibility due to
non-conforming implementations. The issue is frequently addressed by testing
of implementations. Unfortunately testing can only ensure conformance for a
limited number of test cases. Furthermore if having misunderstood the speci-
fication, developers will not find resulting non-conformance. Program verifica-
tion goes beyond by formally proving the implementation’s conformance. But
finding such proves for non-trivial implementations is extremely elaborate.

As contribution to this issue the paper proposes the automatic valida-
tion, which allows detecting non-conformance of occurring message sequences.
When used for testing, non-conformance is detected independent of the devel-
oper’s understanding. Permanently used in production it is a straightforward
approach to detect every occurring violation. SXQT is developed to facilitate
the automatic validation.

2 SXQT

SXQT (Specifications using XQuery expressions on Traces) is based on pred-
icates that constrain the structure of and values in XML documents. Every
requirement on structure and values is expressed individually as a predicate
that returns true, if the requirement is fulfilled. To specify a protocol’s be-
haviour, the temporal ordering of SOAP messages is transformed into an XML
data structure called trace. The idea is similar to Hoare’s specifications of sim-
ple event sequences in [13].

2.1 Traces

The transformation of temporal ordering into the trace is based on observing
messages sent or received by a web service provider or client. Such events are
considered to be atomic, without duration and cannot occur simultaneously
to other events. Absolute time is not considered.

A conceptual observer records events in the order of their observation until

2

Venzke

some point in time into the trace, as illustrated in figure 1. It starts with an
empty trace, an XML document containing only a root element. For every
event the SOAP message and additional observable meta-data is recorded. It
is appended as child element to the trace’s end. The resulting data structure
is exemplified in figure 2, depicting a trace with four events.

Conceptual
Observer

Web ServiceWeb Client

SOAP
Messages

SOAP Message 1
Trace

SOAP Message 4
SOAP Message 3
SOAP Message 2

. . .

Fig. 1. Observer recording trace

<tra:Trace
xmlns:tra="http://ti5.tu-harburg.de/venzke/2002101/traces"
xmlns:env="..." xmlns:wsat="...">

<tra:Message to="Service" operation="1">
<env:Envelope>
<env:Header> ... </env:Header>
<env:Body>

<wsat:Prepare />
</env:Body>

</env:Envelope>
</tra:Message>

<tra:Message to="Client" operation="1">
<env:Envelope> ... </env:Envelope>

</tra:Message>

<tra:Message to="Service" operation="2"> ... </tra:Message>
<tra:Message to="Client" operation="2"> ... </tra:Message>

</tra:Trace>

Fig. 2. Sample trace

Making the trace an XML document is an obvious choice and allows spec-
ifying temporal ordering and data structuring with the same techniques. The
hierarchical nature of XML enables embedding the SOAP message’s hierar-
chies into the single hierarchy of the trace. No additional formalism is needed
to represent temporal ordering. Moreover representing temporal ordering and
message structuring in the same way enables their specification with the same
techniques. SXQT uses predicates for this purpose.

3

Venzke

2.2 SXQT Expressions

SXQT’s predicates are called SXQT expressions. An SXQT expression maps
a trace to true or false. It needs to be designed to return true, if the re-
quirement it verbalises is fulfilled by the trace. It is expressed in the XML
Query Language (XQuery) [6], which provides its syntax and the language’s
semantics.

XQuery is well suited for specifications in the web service field. A formal
semantics is provided in [10]. Being in the standardisation at the World Wide
Web Consortium (W3C) and a successor of SQL for XML databases, future
developers in the web service field will know it. Tools will be available. It
provides means to handle XML structured data and express predicates. User-
defined functions allow abstracting and reusing partial expressions. Finally
a standard library [14] contains many standard functions useful for SXQT
expressions.

To facilitate the construction of predicates SXQT provides an additional
library. Its functions simplify the construction of SXQT expressions, hiding
the structure of the trace and SOAP messages. This also increases readability.

2.3 A sample SXQT expression

As illustration the following will discuss an example SXQT expression 2 . It
verbalises a requirement on message ordering of the two-phase commit protocol
used in WS-Transaction [7] to achieve atomicity. The requirement states that
if a Rollback message is observed, a Commit message must not have been
observed before for the same transaction.

every $m
in opr:restrict(opr:tr(), xs:QName("wsat:Rollback"))
satisfies

empty(opr:restrict(myfn:EventsInTxBefore($m),
xs:QName("wsat:Commit")))

Fig. 3. Sample SXQT expression

As most SXQT expressions, the example in figure 3 uses XQuery’s universal
quantifier (every - in - satisfies) to ensure that a predicate holds true
for a specific type of messages in the trace. In the example it is the Rollback
messages for which the predicate must hold true, that there is no Commit
message earlier in the trace that belongs to the same transaction.

After the keyword in, the sequence of all Rollback messages is determined.
All messages in the trace are accessed with SXQT’s function opr:tr. These
are restricted to the Rollback messages using the function opr:restrict.

For every Rollback message the predicate after the keyword satisfies

is evaluated with the variable $m referencing it. It is given to the func-

2 More examples are given in [22].

4

Venzke

tion myfn:EventInTxBefore, which determines earlier messages in the same
transaction. These are restricted to Commit messages. Since the requirement
declines Commit messages prior to the Rollback message, no message should
be returned. This is checked with XQuery’s standard function empty.

The function myfn:EventInTxBefore is specially defined for specifying
WS-Transaction. By abstracting the partial expression to determine earlier
messages in the same transaction, it greatly increases readability and allows
its reuse in several SXQT expressions. Similar functions can be defined for
other specifications to determine all messages of a conversation between a web
service and one web client to facilitate specifying the conversation’s dynamics.

The function myfn:EventInTxBefore relates a SOAP module with the
protocol’s application specific part. Messages of WS-Transaction are required
to carry a transaction identifier in the SOAP header. It is used by the function
to determine messages belonging to the same transaction. Relating to SOAP
modules gets possible by regarding SOAP messages as a whole. A model based
on WSDL’s port types, as used for BPEL4WS, BPML, WSCL, and WSCI,
would not have allowed this.

2.4 Individual Requirements

Expressing requirements individually is a major strength of SXQT. It allows
specifying only those requirements needed for interoperation. Different par-
ties can express their requirements independently, potentially covering only a
single SOAP module or the application specific part of protocol. SXQT ex-
pressions can be combined with WSDL, describing requirements not expressed
by it.

Specifications based on automata do not allow expressing requirements
individually. A single, closed model (the automata) has to be constructed
that fulfils all requirements. While easing the implementation this obstructs
reasoning about individual requirements. Furthermore adding or suspending
a requirement entails reconstructing the entire model. By expressing require-
ments individually SXQT allows focusing on these and makes adding and
suspending of requirements trivial.

Specifying individual requirements also allows different levels of abstrac-
tion. Only requirements needed for a specific purpose (e.g. interoperation)
have to be expressed. Protocol development can start with major require-
ments. After getting a better understanding, additional requirements can be
added.

A specification’s SXQT expressions may originate from different parties.
In this manner each party can specify its requirements on a protocol inde-
pendently. Standard requirements are formalised once and added to many
specifications. An example is the requirement of WS-Coordination [8] that
messages need to contain a coordination context in their SOAP header. This
is required for all protocols using WS-Coordination such as WS-Transaction.

5

Venzke

The requirement may be formalised only once and then added to the specifi-
cations of all these protocols.

In this way SXQT can be used to specify SOAP modules independent
of a specific web service’s protocol. The SOAP module’s requirements are
described as SXQT expressions. Requirements can include assumptions on
other SOAP modules or the SOAP body. When specifying a web service’s
protocol all SXQT expressions of required SOAP modules are added to its
specification.

SXQT expressions can be combined with WDSL to avoid duplicate specifi-
cation. WSDL cannot be replaced by SXQT, because it is a de facto standard
and a lot of tools read WSDL, e.g. proxy generators. In addition it allows spec-
ifying some requirements more concisely, such as the structure and types of
SOAP messages. Thus only those requirements not expressed in WSDL should
be expressed as SXQT expressions. These should be added to a WSDL docu-
ment using extensibility elements, extensions allowed for WSDL 3 . Extended
WSDL documents, describing a web service’s protocol including behaviour,
are given to developers as reference for implementing the web service provider
and interoperable clients.

A risk of incompatibility remains, if implementations do not conform to
the specification. The issue is independent of the specification technique used.
The paper contributes to the issue by proposing the automatic validation,
which makes detecting non-conformance straightforward.

3 Automatic Validation

The automatic validation is the process of checking, if occurring message se-
quences conform to the protocol specification. The key idea is to directly
compare observed message sequences to the specification. Non-conformance
can then be signalled to developers, administrators, users, or the implemen-
tation. This has similarities to program checkers for side-effect free programs
[4] 4 . SXQT is developed to be well suited for this purpose.

Automatic validation supports developers creating conforming implemen-
tations. It can be applied from first prototypes, even if specifications are in
early state and contain only major requirements. While testing, it frees de-
velopers from deciding, if implementations behave as specified. Even if non-
conformance is originated from developers having misunderstood the specifica-
tion, it will be detected. Being permanently used in production environments
developers are informed about any violation or it is known that none ever
occurred.

Deviations occurring in production environments after a long period of
conformance are a hint to developers that the protocol might have changed

3 See [9], section 6.
4 We have compared this in [21] and [22].

6

Venzke

and web clients need to be updated. The autonomous evolution of web service
providers and clients in different enterprises can lead to changes of the web
service’s protocol without notification of its users. A web client only needs
to be updated, if it can observe a violation against the specification it was
implemented for. Thus validating against this specification allows detecting
protocol changes that require updates.

The automatic validation also allows protecting a web service provider
against non-conforming, compromising SOAP messages. Such messages may
arise form implementation errors or malicious users, who try to intrude the
web service provider. This may compromise the provider if not all necessary
checks are implemented. Using the automatic validation, the checks can be
performed more reliably. A message is then validated before being delivered
to the web service provider. In case of non-conformance it is not delivered,
but answered to the web client with an error message.

3.1 Validator

The entity that performs the automatic validation is called validator. As
depicted in figure 4 it consists of an observer and a core validator. The observer
is capable of observing SOAP messages sent or received by a web service
provider or client. It can be seen as concrete implementation of SXQT’s
conceptual observer. Thus it records SOAP messages in the order of their
observation into the trace (cp. section 2.1). The core validator checks, if the
message sequence represented by the trace conforms to the specification.

Web Client Internet

Trace

Web Service

Core
Validator

Specification

expected /
not expected

Observer Validator

S
O

A
P

Fig. 4. Basic structure of validator

As discussed in [22] validators differ in where and how they observe mes-
sages and when the validation is performed. The observation can take place
on the side of the web service or client. Observers can be implemented in
separate processes as HTTP proxies [11] or in the process of the web service
provider or client respectively. When observing a message it may be validated
immediately or only recorded into the trace for later validation. The latter
approach has less impact on performance but is not applicable to all usage
scenarios.

7

Venzke

3.2 Validation against SXQT Specifications

SXQT makes the automatic validation straightforward and implementable us-
ing standard software in substantial parts. Validation against SXQT expres-
sions can be performed using standard XQuery processors, validation against
XML Schema definitions using standard schema validators.

The straightforwardness of validation against SXQT expressions results
from SXQT’s model and the choice for XQuery. To validate, that an observed
trace conforms to an SXQT expression, the expression just need to be eval-
uated with the trace as parameter. For conformance this must return true.
Since SXQT expressions are XQuery expressions the evaluation can be per-
formed using standard XQuery processors available from different vendors (see
[15]). This facilitates the validator’s implementation.

For extended WSDL documents the validator must also consider require-
ments expressed in WSDL. This includes definitions in XML Schema [19] used
for defining data structures of SOAP messages. Validation against the latter
can be performed using schema validators also available from different vendors
(see [19]).

4 Conclusion

The automatic validation and SXQT are a contribution to the web service
interoperability. The specification technique SXQT allows specifying a proto-
col’s SOAP messages and required behaviour at different levels of abstraction.
Requirements are verbalised individually as predicates called SXQT expres-
sions. These may originate from different parties expressing their requirements
including once formalised standard requirements. Behaviour is described by
transforming temporal ordering into an XML data structure, allowing the
same technique (predicates) to specify message structures and temporal or-
dering. Considering entire SOAP messages enables to specify SOAP modules
including assumptions on other SOAP modules and the SOAP body. The
choice for XQuery makes SXQT easy to learn for developers in the web ser-
vice field.

SXQT is well suited for the automatic validation, a straightforward ap-
proach for checking, if occurring message sequences conform the specification.
It supports developers to create conforming implementations, by detecting
non-conformance in test environments for early prototypes or final implemen-
tations or in production environments.

References

[1] Arkin, Assaf, et. al., Web Service Choreography Interface (WSCI) 1.0. W3C
Note. World Wide Web Consortium (W3C), August 2002.
http://www.w3.org/TR/2002/NOTE-wsci-20020808/ (Accessed: 8 Dec 03)

8

http://www.w3.org/TR/2002/NOTE-wsci-20020808/

Venzke

[2] Arkin, Assaf, Business Process Modelling Language. Draft in last call. The
Business Process Management Initiative (BPMI.org), 2002.
http://www.bpmi.org/bpml-spec.esp (Accessed: 13 Feb 03)

[3] Banerji, Arindam, et. al., Web Services Conversation Language (WSCL) 1.0.
W3C Note. World Wide Web Consortium (W3C), March 2002.
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/ (Accessed: 8 Dec 03)

[4] Blum, Manuel and Kannan, Sampath, Designing programs that check their work.
In: Journal of the ACM, Vol. 42, Nr. 1, S. 269-291, Januar 1995.
ftp://ftp.cis.upenn.edu/pub/kannan/jacm.ps.gz (Accessed: 21 Dec 02)

[5] Box, Don, Understanding GXA. Microsoft Corporation, July 2002.
http://msdn.microsoft.com/library/en-us/dngxa/html/
understandgxa.asp (Accessed: 15 Dec 03)

[6] Boag, Scott, et. al., XQuery 1.0: An XML Query Language. W3C Working
Draft. World Wide Web Consortium (W3C), November 2003.
http://www.w3.org/TR/2003/WD-xquery-20031112/ (Accessed: 11 Dec 03)

[7] Cabrera, Felipe, et. al., Web Service Transaction (WS-Transaction). BEA
Systems, International Business Machines Corporation, Microsoft Corporation,
August 2002.
http://www-106.ibm.com/developerworks/library/ws-transpec/
(Accessed: 6 Feb 04)

[8] Cabrera, Felipe, et. al., Web Services Coordination (WS-Coordination). BEA
Systems, International Business Machines Corporation, Microsoft Corporation,
September 2003.
http://www-106.ibm.com/developerworks/library/ws-coor/
(Accessed: 6 Feb 04)

[9] Chinnici, Roberto, et. al., Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language. W3C Working Draft. World Wide Web Consortium
(W3C), November 2003.
http://www.w3.org/TR/wsdl20/ (Accessed: 6 Feb 04)

[10] Draper, Denise, et. al., XQuery 1.0 and XPath 2.0 Formal Semantics. W3C
Working Draft. World Wide Web Consortium (W3C), November 2003.
http://www.w3.org/TR/2003/WD-xquery-semantics-20031112/
(Accessed: 11 Dec 03)

[11] Fielding. R., et. al., Hypertext Transfer Protocol – HTTP/1.1. RFC 2616.
Internet Engineering Task Force (IETF), Juni 1999.
http://www.ietf.org/rfc/rfc2616.txt (Accessed: 23 Jul 03)

[12] Gudgin, Martin, et. al., SOAP Version 1.2 Part 1: Messaging Framework. W3C
Recommendation. World Wide Web Consortium (W3C), June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
(Accessed: 18 Jul 03)

9

http://www.bpmi.org/bpml-spec.esp
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/
ftp://ftp.cis.upenn.edu/pub/kannan/jacm.ps.gz
http://msdn.microsoft.com/library/en-us/dngxa/html/understandgxa.asp
http://msdn.microsoft.com/library/en-us/dngxa/html/understandgxa.asp
http://www.w3.org/TR/2003/WD-xquery-20031112/
http://www-106.ibm.com/developerworks/library/ws-transpec/
http://www-106.ibm.com/developerworks/library/ws-coor/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2003/WD-xquery-semantics-20031112/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

Venzke

[13] Hoare, C.A.R, Communicating Sequential Processes. Prentice-Hall, London,
1985.

[14] Malhotra, Ashok, et. al., XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Working Draft. World Wide Web Consortium (W3C), November 2003.
http://www.w3.org/TR/2003/WD-xpath-functions-20031112/
(Accessed: 11 Dec 03)

[15] Marchiori, Massimo, XML Query (XQuery). Website. World Wide Web
Consortium (W3C), December 2003.
http://www.w3.org/XML/Query (Accessed: 12 Dec 03)

[16] Marsh, Jonathan, Le Hgaret, Philippe, Web Services Description Working
Group. Website. World Wide Web Consortium (W3C), December 2003.
http://www.w3.org/2002/ws/desc/ (Accessed: 12 Dec 03)

[17] Meredith, L.G., Bjorg, Steve, Contracts and Types. In: Communications of the
ACM, Vol. 46, No. 10, October 2003.

[18] Microsoft, Web Services Specifications Index Page. Website. Microsoft
Corporation, Redmond, 2003.
http://msdn.microsoft.com/library/en-us/dnglobspec/html/
wsspecsover.asp (Accessed: 10 Dec 03)

[19] Sperberg-McQueen, C. M., Thompson, Henry, XML Schema. Website. World
Wide Web Consortium (W3C), November 2003.
http://www.w3.org/XML/Schema (Accessed: 12 Dec 03)

[20] Thatte, Satish, et. al., Business Process Execution Language for Web Services
Version 1.1. BEA Systems, International Business Machines Corporation,
Microsoft Corporation, SAP AG, Siebel Systems, 2003.
http://www-106.ibm.com/developerworks/library/ws-bpel/
(Accessed: 30 Jan 04)

[21] Venzke, Marcus, Automatic Validation of Web Services. In: Electronic
proceedings of the 8th CaberNet Radicals Workshop. October 2003.
http://www.newcastle.research.ec.org/cabernet/workshops/radicals/
2003/papers/Venzke Cabernet03 030731.pdf (Accessed: 6 Feb 04)

[22] Venzke, Marcus, Spezifikation von interoperablen Webservices mit XQuery.
Doctoral thesis. Technische Universität Hamburg-Harburg, 2003.
http://doku.b.tu-harburg.de/volltexte/2004/51/ (Accessed: 6 Feb 04)

10

http://www.w3.org/TR/2003/WD-xpath-functions-20031112/
http://www.w3.org/XML/Query
http://www.w3.org/2002/ws/desc/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wsspecsover.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/wsspecsover.asp
http://www.w3.org/XML/Schema
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www.newcastle.research.ec.org/cabernet/workshops/radicals/2003/papers/Venzke_Cabernet03_030731.pdf
http://www.newcastle.research.ec.org/cabernet/workshops/radicals/2003/papers/Venzke_Cabernet03_030731.pdf
http://doku.b.tu-harburg.de/volltexte/2004/51/

	Introduction
	SXQT
	Traces
	SXQT Expressions
	A sample SXQT expression
	Individual Requirements

	Automatic Validation
	Validator
	Validation against SXQT Specifications

	Conclusion
	References

