print page

Volker Turau

Picture of Volker Turau
Prof. Dr. rer. nat. Volker Turau
Room 4.088, building E
Am Schwarzenberg-Campus 3
21073 Hamburg
phone+49 40 42878 - 3530
fax+49 40 42878 - 2581
e-mail

I am professor at Hamburg Universtity of Technology since October 2002.


Program Committee Activities | Editorial Activities | CV | Ph.D. students

Books

Algorithmische Graphentheorie - 4., extended and revised edition
De Gruyter Studium, 2015, ISBN 978-3-110-41727-2 (Solutions)

Erdős number

My Erdős number is 4.

Teaching

Publications

Volker Turau, Marcus Venzke and Tobias Lübkert. Impacts of Domestic Electric Water Heater Parameters on Demand Response. In Proceedings of the 5th D-A-CH+ Energy Informatics Conference 2016, September 2016. Klagenfurt, Austria. To be published.
@InProceedings{Telematik_D-A-CH+_DemandResponse_2016, author = {Volker Turau and Marcus Venzke and Tobias Lübkert}, title = {Impacts of Domestic Electric Water Heater Parameters on Demand Response}, booktitle = {Proceedings of the 5th D-A-CH+ Energy Informatics Conference 2016}, pages = , day = {29-30}, month = sep, year = 2016, location = {Klagenfurt, Austria}, }
Abstract: This paper analyzes the impact of the high dimen- sional parameter space of domestic electric water heaters (DEWH) for demand response (DR). To quantify the con- sumer comfort a novel metric is introduced considering a stochastic distribution of different water draw events. Incor- porating three control algorithms from literature, it is shown that all considered parameters of a DEWH except the heat conductivity have a significant impact on consumer satisfac- tion. The effect on DR is mainly influenced by the temper- ature range and the planning horizon, but also by the heat conductivity and the volume. In contrast, the rated power of the heating element and the nominal temperature have no significant impact on the effect on DR. The impacts are an- alyzed by varying these parameters in a simulation of 1000 DEWHs considering three different controllers: a common thermostat, an exchange price dependent nominal temper- ature changing mechanism and an energy scheduling algo- rithm proposed by Du and Lu.
Volker Turau and Christoph Weyer. Cascading Failures Caused by Node Overloading in Complex Networks. In Proceedings of the Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids, April 2016. Vienna, Austria. To be published.
@InProceedings{Telematik_CPSR-SG2016_SmartGrid, author = {Volker Turau and Christoph Weyer}, title = {Cascading Failures Caused by Node Overloading in Complex Networks}, booktitle = {Proceedings of the Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids}, pages = , day = {12}, month = apr, year = 2016, location = {Vienna, Austria}, }
Abstract: It is well known that complex networks are vulnerable to the failure of hubs in terms of structural robustness. An as yet less researched topic is dynamical robustness, which refers to the ability of a network to maintain its dynamical activity against local disturbances. This paper analyzes the impact of overload attacks in complex networks and gives a precise definition of this type of attack using the load redistribution model. The main contribution is a greedy algorithm to select a small number of candidates for an overload attack maximizing the impact with respect to the number of failed nodes and load increase. The quality of the algorithm is analyzed for a real power grid network.
Marcus Venzke and Volker Turau. Simulative Evaluation of Demand Response Approaches for Waterbeds. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), April 2016. Leuven, Belgium. To be published.
@InProceedings{Telematik_EnergyCon_2016_SimulationDemandResponseWaterbed, author = {Marcus Venzke and Volker Turau}, title = {Simulative Evaluation of Demand Response Approaches for Waterbeds}, booktitle = {Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON)}, pages = , day = {4-8}, month = apr, year = 2016, location = {Leuven, Belgium}, }
Abstract: This paper quantitatively compares five demand response (DR) approaches for waterbeds using simulation. The approaches enable privacy by design with a local control and contribute to the planning phase of the electricity network’s balancing process. Approaches are assessed by their energy consumption, their ability to shift power consumption to times of high availability, and the effort of realization and configuration. Load steps were identified as a risk for power network stability. A classification of DR methods, based on the position of their contribution within the electricity network’s balancing process, is used to distinguish our approach from the DR approaches found in the literature.

The complete list of publications is available separately.

Supervised Theses

Open Theses

Ongoing Theses