
Evaluation of Message Delay Correlation
in Distributed Systems

Daniel Albeseder1∗

1Technische Universität Wien, Embedded Computing Systems Group E182/2
Treitlstrasse 3, A-1040 Vienna (Austria), da@ecs.tuwien.ac.at

Abstract — Partially synchronous computational models fall in between syn-
chronous models, which are demanding in terms of requirements but admit solutions
to most of the important fault-tolerant distributed computing problems, and the purely
asynchronous model, where this is not the case. The Θ-Model is a recently presented
partially synchronous model close to pure asynchrony. It just assumes a bound on
the ratio of maximum vs. minimum end-to-end delays of messages simultaneously
in transit. This paper provides experimental evidence for the assumed correlation
of end-to-end delays in some common type of distributed systems: Using a com-
prehensive custom evaluation framework, we measured the end-to-end delays in a
simple clock synchronization algorithm running on a Fast-Ethernet network connect-
ing Linux workstations. Our results reveal a significant correlation between maxi-
mum and minimum delay under several load conditions, and hence confirm that the
bounded ratio assumption of the Θ-Model is well-founded.

1 Introduction
Today, most real-time system designs are based on synchronous models of computation.
Although synchronous solutions are indeed quite easy to understand and to verify, their
domain of applicability is restricted due to the required a priori known bounds on compu-
tational step time and transmission delays, which are load dependent. Obviously at high
network load, the current message delays are significantly larger than the delays which
are experienced in a network during situations that are close to idle. As laid out in [1], self
organizing solutions that adapt automatically to the current load and thus always perform
as good as the underlying system allows is one major goal of next generation embedded
systems.

A system model that has at its core a self organizing property is the Θ-Model [2, 3].
Rather than a priori known bounds on maximum and minimum end-to-end delays, the
Θ-Model assumes only an a priori known bound on the ratio of all messages that are
simultaneously in transit. In addition, it facilitates purely message-driven (clock and timer

∗Supported by the FWF-project Theta (project no. 17757-N04)

139

DANIEL ALBESEDER

free) algorithms, which are only controlled by message receptions and do not depend on
or consist of any timing values. Thus algorithms in the Θ-Model are independent of
bounds on the transmission delay, given that the ratio holds. The question explored in this
paper is whether this assumption is valid in current distributed systems.

There is an intuitive argument in favor of such a correlation, at least for some classes
of distributed systems: In case of cooperative algorithms, where broadcasting is the main
communication primitive, the system load is very likely to be equally distributed. If one
process suffers from the worst-case load, it is unlikely that some other process (executing
the same distributed algorithm) is totally idle at the same time. This has also been con-
firmed by schedulability analysis in case of shared channel based systems [4]. The present
paper provides experimental evidence for this correlation also in a distributed system of
switched Ethernet-coupled Linux workstations.

The major advantage of the Θ-Model over time-driven models is its capability for cov-
erage expansion: Consider overloads or other unexpected operating conditions that lead
to violations of the a priori upper bound on delays, thereby violating synchronous model
assumptions. In case the actual minimum delay also increases, the ratio Θ and hence the
Θ-Model may still be valid.

2 Model

Network We survey the Θ-Model which was introduced in [2]: We consider a system
of n distributed processors with only one process per processor (in general the model is
not limited to this). From the n processes, up to f may behave Byzantine faulty. The
network between the processors is modeled as a reliable fully-connected point-to-point
network. Note that we will actually use a switched Ethernet for the evaluation. Given our
high-performance switches, it is considered to behave like a fully-connected network. We
consider two communication primitives for the algorithms: A broadcast primitive, which
sends a message to all processes, and a message reception function. Furthermore, we
suppose the sender of every message can be unambiguously determined from the network
link over which the message was received; i.e., we assume in our evaluation that the
sender address of a message cannot be forged. For a real application this can be obtained
by message authentication.

Timing The end-to-end delay δ of a message is the time span from the invocation of
the broadcast primitive at the sender process at time tBE (called broadcast event) to the
completion of message processing at the receiver at time tPE (denoted perception event)
cf. Figure 2. Thus δ includes not only the transmission delay but also the computational
time to generate and process the message plus sojourn times in waiting queues. A message
is called in transit at time t if tBE ≤ t < tPE . In the following definitions, we consider
only messages sent and received by correct processes over a correct link. We define τ +(t)
as the maximum end-to-end delay of messages which are in transit at time t. Respectively,
τ−(t) denotes the minimum end-to-end delay at time t. The current uncertainty ratio at
time t can be obtained by division of these two values: ϑ(t) = τ+(t)/τ−(t). Note that
ϑ(t) ≥ 1 trivially holds for all times t, since τ+(t) ≥ τ−(t).

For describing the time-independent behavior of the system we define the cumulative

140

EVALUATION OF MESSAGE DELAY CORRELATION IN DISTRIBUTED SYSTEMS

uncertainty ratio Θ = maxt(ϑ(t)) as the maximum of all current uncertainty ratios over
all times t. Another ratio can be determined by employing the overall bounds of the end-
to-end delays — i.e., τ+ = maxt(τ

+(t)) and τ− = mint(τ
−(t)) — to define a pessimistic

overall uncertainty ratio Θp,o = τ+/τ−. Note that this ratio is not relevant for the timing
of our algorithms. We just determine it for the sake of numerical comparison.

Significant Messages Algorithms in the Θ-Model are timer free and message-driven.
They usually advance in asynchronous rounds, where every process switches to the next
round and broadcasts a message upon reception of the n − f -th message of the current
round. This implies that the round switching times ei are typically not determined by
the shortest message delay τ−(t), but by the time n − f fast messages require for being
delivered. Therefore, the delay of the n − f -th fastest message is relevant to us, and we
denote it by δp

r (t). So the relevant fastest delay is τ−
r (t) = maxpδ

p
r (t) for all processes p

which have a round switch at time t = ei. If t is no round-switching time, the relevant
fastest delay is defined as τ−

r (t) = τ−
r (ei), where ei−1 < t < ei. Clearly, ei−1 and ei

denote two successive round-switching times, i.e. times where the first correct process
switches to round i resp. i + 1. For our evaluation, we therefore only have to measure
τ−
r (t) and τ+(t) at round-switching times. If there is no message in transit at time t,

τ+(t) = τ−
r (t) is set by definition. The global minimum of τ−

r (t) is defined by τ−
r =

mint(τ
−
r (t)). This leads us to the significant uncertainty ratio Ω = maxt(τ

+(t)/τ−
r (t))

and the overall realistic uncertainty ratio Θr,o = τ+/τ−
r . For an in-depth description of

the Θ-Model and Θ-algorithms consult [5].

3 Clock Synchronization Algorithm

For our evaluation, we employed a simplified version of the consistent broadcast based [6]
clock synchronization algorithm from [7, 5]. It maintains an integer-valued clock Cp(t) at
any process p that satisfies the usual precision and envelope conditions, for n ≥ 3f + 1.

In the algorithm of Figure 1, variable k holds the current round number, which repre-
sents also the current clock value Cp(t). The algorithm uses messages that carry integers1

for disseminating the current clock value. After initialization, the algorithm sends an (init,
1) message to all processes. Depending on how many (init, k) messages were already re-
ceived, one of the two rules may be executed at the receiver. The first rule (line 6) is the
catch-up rule, which guarantees correct processes that lagged behind the current clock
value to catch-up quickly. The second rule (line 12) allows the clock value to advance to
round k + 1, provided that a sufficiently large quorum of correct processes are already in
round k.

Since the algorithm is message driven, it would execute as fast as message arrivals
allow. In order to slow down progress and hence reduce processing and network load
in systems with small delay × bandwidth product [2], some local delay D > 0 can be
introduced in line 13 (with the drawback of losing the purely message-driven property).

Theoretical analysis [5] revealed a precision of �Ω + 2� if D = 0. The clock rate (i.e.,
the number of increments of k per second) is within [O(1/τ+), O(1/τ−

r)].

1In practice, unbounded integers can be approximated by sufficiently large variables.

141

DANIEL ALBESEDER

0: VAR k : integer := 1;
1:

2: /* Initialization */
3: send (init, 1) to all [once];
4:

5: /* catch-up rule */
6: if received (init, �) from at least f + 1 distinct processes with � ≥ k
7: → k := �; /* jump to new round */
8: send (init, k) to all [once];
9: fi
10:

11: /* advance rule */
12: if received (init, k) from at least n − f distinct processes
13: delay(D);
14: → k := k + 1;
15: send (init, k) to all [once]; /* start next round */
16: fi

Figure 1: Clock-Synchronization Algorithm for a process p

4 Evaluation System
The evaluation system consists of a network of several workstations (Pentium 4, 2.4GHz
FSB533) running Redhat2 Linux 7.2 with a modified 2.4.20 kernel. The fully-connected
network is emulated by a 100MBit/s switched Fast-Ethernet. In our experiments, one
workstation was dedicated to control the test runs and four to seven workstations executed
the algorithm.

The kernel needed some adaptations, such that the workstations were suited for running
the evaluation and the algorithms. The main improvement compared to a vanilla Linux3

kernel was the high-resolution kernel timers patch [8], which gives kernel-timers the abil-
ity to trigger with a precision about 1µs, while ordinary Linux kernel timers can trigger
only by multiples of a tick, which is 10ms for a standard 2.4 kernel. Since responsiveness
of the kernel is a major issue, the kernel-preemption patch [9] was used as well.

Moreover, it happens on rare occasions, that a bottom-half4 of the timer-interrupt is not
executed directly after the interrupt service routine and will be delayed until the next tick.
This would have severe effects on our delay(D)’s timing. This situation was circumvented
by increasing the priority of the kernel thread ksoftirqd— which is responsible for
executing the bottom-halves — to the maximum real-time priority. This ensures that even
if the bottom-half is not executed directly after the interrupt service routine, ksoftirqd
is scheduled immediately afterwards.

One of the most crucial parts for Θ-algorithms is scheduling. This can be divided

2http://www.redhat.com
3Vanilla Kernel denotes the original Kernel released by Linus Torvalds, without any patches applied

(http://www.kernel.org).
4Linux interrupt drivers consists of two parts, the top-half, which is executed immediately in the low-

level interrupt handler, and the bottom-half, which is hence deferred and executed later in kernel context.
So interrupt handlers only block the system for a small amount of time, but larger computations initiated by
an interrupt can be done quite fast.

142

EVALUATION OF MESSAGE DELAY CORRELATION IN DISTRIBUTED SYSTEMS

netif_rx() eval_end_event()

netif_rx()eval_broadcast()eval_start_event()

trr

tsrtPEtr
clockq

clockptBE ts

q → p
round-trip reply

message transmission p → q

Local comp. at q

Local comp. at p

Receiver q

Sender p

Figure 2: One message round-trip transparently measured by the EvalAPI function calls.

into message and task scheduling. For message scheduling, Linux uses FIFO-queues by
default. However, other message scheduling algorithms can be employed, but just for
incoming messages, and only at IP-level. So the lower network levels still use FIFO-
queues. For outgoing messages there is no scheduling implementation in Linux by de-
fault so only FIFO-queuing is used here. For task scheduling, Linux implements the
POSIX1.b real-time scheduling policies. These define fixed preemptive real-time priori-
ties with scheduling types FIFO and RR (round robin) which can be used for employing
head-of-line scheduling [10]. By using one of these real-time priorities one can guaran-
tee task invocation (preemption of a lower priority task), whenever a task with a higher
priority than the current running task becomes ready.

The evaluation system [11, 12] consists of the evaluation software evalpsa and the
controlling software autopsa. The controlling software starts and ends test runs and
sends load change requests to the evaluation software. The evaluation software consists
of four tasks. The first is the algorithm task itself, which contains the algorithm to be
evaluated, linked together with the EvalAPI. The latter provides the functions in par-
ticular instrumented versions of message broadcast and receive primitives necessary to
implement and evaluate Θ-algorithms. Figure 2 shows a round-trip measurement by us-
ing EvalAPI functions to track the end-to-end delays. The netif_rx function is a
Linux kernel internal function, which is called by the network device driver whenever a
message was received. This function creates a time stamp which we are using. The other
functions are EvalAPI functions, which are used by our algorithm implementation.

The second task is the control task, which starts and stops the algorithm task, and also
changes load settings over time. The remaining two tasks are dedicated to generate net-
work resp. processor load. For generating low level processor load, a custom kernel-
module was used, which generates timer-interrupt load with an adjustable period. Be-
sides this kernel-module, the processor-load task generates I/O load by writing data onto
the hard-disk. Finally the netload task simply sends load messages to every processor in
a load dependent interval. Suitable real-time priorities were assigned to each task. Since
a very busy algorithm task with top priority could not be aborted, the control task was
provided with the top priority to prevent a system-lock. This created some additional
scheduling latencies, which had only negligible small influence on our results.

143

DANIEL ALBESEDER

5 Measurements
Uncertainty Ratio Calculation NTP [13] provides accuracy of clock synchronization
which is not sufficient to do one-way measurements by comparing local send time at
the sender to local receive time at the receiver. Thus round-trip delay measurements
were used. This was achieved by assuming that an algorithm message needs the same
transmission time as a round-trip reply, since both messages have the same size. The end-
to-end delay is then computed by adding the local computation times before the send,
after the receive and the average of both message delays.

Due to lack of global time, an artificial timebase had to be used to determine which
messages were in transit at any particular instant. The clock drifts, which can occur
during a single round-trip delay, were assumed negligible; clock drifts during the whole
run were considered, however. One processor clock was chosen to be the artificial global
time base, and all other clocks were aligned to it by calculating the time precision of all
perception events compared to the time base of the chosen processor. This was also based
on the assumption that algorithm messages and round-trip reply messages need the same
transmission time. These precision values were used for determining the global time of all
events on all processors by using the precision value whose time had the smallest absolute
difference on the local time scale.

At evaluation start, caching and swapping effects could occur. This, and uneven termi-
nation of the algorithm at the end of the test run results in invalid measurements. So the
first and last values were not used for data analysis.

Goals The main goal was to verify whether there is a correlation between end-to-end
delay bounds in various load scenarios. Moreover, we wanted to get an idea of the order
of magnitude of Ω. Thus, first tests with constant system loads were executed. Three
scenarios were used:

– pure network load

– pure processor load

– combined network and processor load

The next step was to observe the system under varying system loads; tests were con-
ducted with increasing and decreasing loads. Finally, fast load jumps were induced by
changing the load from 10% to higher values (50% to 90%) and vice versa every 10ms in
order to find out whether fast load changes could result in situations where one process
already suffers from the increased load, resulting in higher end-to-end delays, and another
one does not. This could lead to larger values of Ω and it was to be examined whether the
worst-case bound Θr,o is reached in such cases.

Besides the magnitude of Ω, the relation to the overall uncertainty ratios were of major
interest. In the following we express these relations via correlation factors g = Θp,o/Ω
and gr = Θr,o/Ω.

Test Scenarios Most tests were conducted by using four computers executing the algo-
rithm of Figure 1 with n = 4 and f = 1; we did, however, refrain from actually injecting

144

EVALUATION OF MESSAGE DELAY CORRELATION IN DISTRIBUTED SYSTEMS

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90

processor load
network load

combined load

maximum end-to-end delay τ+ (n = 4, f = 1, D = 1ms)

load in percent

en
d-

to
-e

nd
de

la
y

in
µ

s

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80 90

processor load
network load

combined load

maximum end-to-end delay τ+ (n = 7, f = 2, D = 1ms)

load in percent

en
d-

to
-e

nd
de

la
y

in
µ

s

Figure 3: Maximum end-to-end delays τ+ over five test-runs each

failures. Some tests were repeatedly conducted with n = 7 and f = 2 to determine the
influence the number of computers and number of allowed failures have on the system
parameters.

The inter-round delay D was set to 1ms, 100µs and 0s respectively. The constant load
and load-jump tests ran for 30 seconds, while the increasing/decreasing load settings used
longer runtimes.

The real-time priorities of the tasks were in the following order (from high to low):
control task, algorithm task, netload task, cpuload task. Some tests used normal Linux
scheduling without real-time priorities for comparison.

6 Results

Since we used only one process per processor, the value n corresponds to the number
of workstations in our evaluation. Thus, whenever there is no further notice about the
number of processors n and the delay D, the following values are assumed: n = 4 and
D = 1ms.

In the following figures the left sides represents results for n = 4 while the right sides
shows results for n = 7.

6.1 End-to-End Delay Comparison

Figure 3 shows a not very surprising correlation between the load and τ+. Figure 4 is
more interesting, because some correlation between τ−

r and the load can be observed. (In
contrast, τ− was about 23µs for the most cases, and only increased slightly for very high
load settings.)

We believe the peak for 70% network load is caused by the special network stack imple-
mentation of Linux, which favors throughput over transmission delay by switching into
polling mode.

Note that the performance of our algorithm does not depend upon the ratio Θr,o of τ+

during high load and τ− during low load, but rather on Ω = maxt(τ
+(t)/τ−

r (t)). Values
for Ω are given in the following section. A comparison of Θr,o and Ω can be found in
Section 6.3.

145

DANIEL ALBESEDER

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

 0 10 20 30 40 50 60 70 80 90

processor load
network load

combined load

minimum end-to-end delay τ−
r (n = 4, f = 1, D = 1ms)

load in percent

en
d-

to
-e

nd
de

la
y

in
µ

s

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

 0 10 20 30 40 50 60 70 80 90

processor load
network load

combined load

minimum end-to-end delay τ−
r (n = 7, f = 2, D = 1ms)

load in percent

en
d-

to
-e

nd
de

la
y

in
µ

s

Figure 4: Minimum end-to-end delays τ−
r over five test-runs each

6.2 Values of Ω

Our main interest was focused on experimental values for the significant uncertainty ratio
Ω. Experimental values are given in Figure 5.

load setting test setting 0% 10% 30% 50% 70% 90%
pure network load n = 4, f = 1 2.72 7.05 8.60 8.78 4.81 8.22

n = 7, f = 2 4.52 8.60 9.78 8.47 8.91 5.23
pure processor load n = 4, f = 1 2.72 3.74 4.29 5.11 6.97 18.47

n = 7, f = 2 4.52 4.43 4.74 5.45 6.56 11.44
combined load n = 4, f = 1 2.72 7.98 7.97 10.15 5.71 10.85

n = 7, f = 2 4.52 8.67 10.94 7.88 5.98 8.66

Figure 5: Maximum Ω over five evaluation runs for D = 1ms

The measurements indicate that only very high processor load — i.e., interrupt load —
really increases Ω. For D ≥ 100µs using head-of-line scheduling, Ω was below 12 in all
other load scenarios. However this does not mean that the assumptions of the Θ-Model
are violated for the very high processor load case. It only indicates that the system would
perform worse if these load scenarios are considered to be allowed. By contrast, normal
Linux scheduling resulted in Ω values above 1800 in some cases. For D = 0, Ω was larger
than the values above. For example, for no load with n = 4, f = 1, it was 16.38, for no
load with n = 7, f = 2 it was 21.49, and climbed up to 69 in the worst scenario. These
experiments also showed some correlation between Ω and the load, and gr was above 1
(compare Section 6.3). However, a single test-run for D = 0, n = 7, f = 2 at 30%
processor load did protrude with values for τ+ = 71870µs and Ω = 789.8. It is still not
clear what affects led to this big end-to-end delay while using head-of-line scheduling.

Further tests revealed that network load does not influence Ω in a linear way. There
are areas of network load where Ω is much lower than usual. This seems to be caused
by higher τ−

r values, which are caused by the Linux network stack implementation as
described in Section 6.1.

146

EVALUATION OF MESSAGE DELAY CORRELATION IN DISTRIBUTED SYSTEMS

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60 70 80 90

processor load
network load

combined load

minimum correlation factor gr (n = 4, f = 1, D = 1ms)

load in percent

co
rr

el
at

io
n

fa
ct

or

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60 70 80 90

processor load
network load

combined load

minimum correlation factor gr (n = 7, f = 2, D = 1ms)

load in percent

co
rr

el
at

io
n

fa
ct

or

Figure 6: Minimum gr over five test-runs each

6.3 Correlation Factor

The correlation factor gr expresses the correlation between τ+ and τ−
r for current situa-

tions. For load scenarios, where the correlation between these two end-to-end delays to
the current load is high, the correlation factor will be also higher than for situations where
τ−
r only increases slightly with the load. In Figure 6 the correlation factor is shown for

the constant load cases.
Since both, the long delays and the short ones, are load-dependent (cf. Section 6.1),

the most pessimistic uncertainty ratio is the ratio between high load τ+ and low load τ−
r .

For increasing resp. decreasing load runs, these correlation factors gr = Θr,o/Ω were
as expected greater than in the constant load case. Tangible values for processor load
0%–90% were gr > 3.6 and for network load 0%–99% gr > 1.4.

6.4 Load Jumps

Looking at the load jump measurements, it can be seen that Ω was larger on average. The
correlation factors gr were smaller for most load-jump cases, but always stayed signifi-
cantly above 1. This shows that the τ+ vs. τ−

r correlation exists at least in our setting.

6.5 Histograms of End-to-End Delays and Ω

Formal analysis [5] revealed that not all messages have to be considered when estimat-
ing the performance of an algorithm: Just the relation between the duration of messages
which actually contribute to a round-switch is significant for the performance of the al-
gorithm. So the end-to-end delays δp

k,x for all rounds k and processes p were examined
for every round-switching time e(p, k) where δp

k,x denotes the x-th fastest message which
contributes to a round k switch at process p.

In Figure 7, histograms hx of the set of δp
k,x for all processes p and rounds k for no

load and a 70% combined load run are given. x = 0 denotes all messages which did not
contribute to any round-switch. As you can notice, the histograms h1 are very different
to the other ones. This is due to the fact that in most cases values in h1 represent self-
receptions, where the queuing in the network and in the network driver is bypassed, and
there is no real transmission delay. However, the internal processing of self-receptions

147

DANIEL ALBESEDER

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

 20 40 60 80 100 120 140 160 180

histogram h1 for no load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 100 200 300 400 500 600 700 800 900

histogram h1 for 70% combined load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 20 40 60 80 100 120 140 160 180

histogram h2 for no load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 100 200 300 400 500 600 700 800 900

histogram h2 for 70% combined load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 20 40 60 80 100 120 140 160 180

histogram h3 for no load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 100 200 300 400 500 600 700 800 900

histogram h3 for 70% combined load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 20 40 60 80 100 120 140 160 180

histogram h0 for no load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 100 200 300 400 500 600 700 800 900

histogram h0 for 70% combined load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 20 40 60 80 100 120 140 160 180

histogram of τ+ for no load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 100 200 300 400 500 600 700 800 900

histogram of τ+ for 70% load

end-to-end delay in µs

ab
so

lu
te

fr
eq

ue
nc

y

Figure 7: End-to-end delays ordered by speed with bin width 1µs

148

EVALUATION OF MESSAGE DELAY CORRELATION IN DISTRIBUTED SYSTEMS

 0

 500

 1000

 1500

 2000

 2500

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

histogram of Ω for no load

significant uncertainty ratio Ω

ab
so

lu
te

fr
eq

ue
nc

y

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 1.5 2 2.5 3 3.5 4

histogram of Ω for 70% load

significant uncertainty ratio Ω

ab
so

lu
te

fr
eq

ue
nc

y

Figure 8: Histogram for Ω > 1 with bin width 0.01

also needs time, thus self-receptions can be delayed by processor and network load. In
the 70% load case, the distance between the peaks in h1 matches the timing delay of the
interrupt load generator.

On the other hand h2 and h3 look quite similar, but h3 has an higher average than h2.
The τ+ histograms show the frequency of τ+ values for all round-switching times e.

Finally Figure 8 shows the histograms of the Ω values above 1. Since Ω = 1 happens
on many round-switches (31971 times for no load, which is 33% of all events, and 21859
times, which is 31%, for 70% load) this would lead to a bad scaling of the histogram,
so the peak for Ω = 1 was omitted. Since Ω ≥ 1 only this peak is missing inside the
histogram.

7 Future Work
Although the results of the measurements were promising in general, there are some short-
comings in the measurement method: Due to the round-trip measurement of the end-to-
end delays, the reply messages affect the algorithm and its timing properties. Moreover,
the calculated end-to-end delay is in fact the average of two real end-to-end delays. Thus
some peaks may average out. To eliminate those effects in future experiments, a low
level clock synchronization hardware developed in the course of our SynUTC-project [14]
should be used for one-way delay measurements.

It is still not clear whether and how the occurrence of process and link failures affect our
results. Conducting failure injection experiments using evalpsa is hence mandatory.

A general shortcoming of experimental evaluation is limited control over the system, in
particular, over message delays and arrival patterns. Consequently, our experiments only
allow us to conclude that the Θ-assumption makes sense for some particular operating
conditions. In order to improve on this, we will build a suitable simulation framework,
which will give us sufficient control over the system behavior.

8 Conclusion
This paper reports on an experimental evaluation of the correlation between maximum and
minimum end-to-end delays in a distributed system of Linux workstations connected via

149

DANIEL ALBESEDER

a switched Ethernet network. A simple clock synchronization algorithm for the Θ-Model
was implemented via tasks using high real-time priority, and the correlation between min-
imum and maximum end-to-end delay was noticeable for every load scenario considered,
although the actual value of the ratio was not the same in all test runs. This gives some ev-
idence that the stipulated coverage expansion property [15] of the Θ-Model indeed holds
true.

References
[1] Wilfried Elmenreich. Intelligent methods for embedded systems. In Proceedings of the First Work-

shop on Intelligent Solutions for Embedded Systems, pages 3–11, Vienna, Austria, June 2003.

[2] Gérard Le Lann and Ulrich Schmid. How to implement a timer-free perfect failure detector in par-
tially synchronous systems. Technical Report 183/1-127, Department of Automation, Technische
Universität Wien, January 2003.

[3] Josef Widder, Gérard Le Lann, and Ulrich Schmid. Failure detection with booting in partially syn-
chronous systems. In Proceedings of the 5th European Dependable Computing Conference (EDCC-
5), volume 3463 of LNCS, pages 20–37, Budapest, Hungary, April 2005. Springer Verlag.

[4] J.-F. Hermant and Josef Widder. Implementing time free designs for distributed real-time systems (a
case study). Research Report 23/2004, Technische Universität Wien, Institut für Technische Infor-
matik, May 2004. Joint Research Report with INRIA Rocquencourt. (Submitted for publication).

[5] Josef Widder. Distributed Computing in the Presence of Bounded Asynchrony. PhD thesis, Vienna
University of Technology, Fakultät für Informatik, May 2004.

[6] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626–645,
July 1987.

[7] Josef Widder. Booting clock synchronization in partially synchronous systems. In Proceedings of the
17th International Symposium on Distributed Computing (DISC’03), volume 2848 of LNCS, pages
121–135, Sorrento, Italy, October 2003. Springer Verlag.

[8] High Resolution Timers homepage.
http://high-res-timers.sourceforge.net/, last tested in April 2005.

[9] The linux kernel preemption project.
http://kpreempt.sourceforge.net/, last tested in April 2005.

[10] J.-F. Hermant and Gérard Le Lann. Fast asynchronous uniform consensus in real-time distributed
systems. IEEE Transactions on Computers, 51(8):931–944, August 2002.

[11] Daniel Albeseder. Experimentelle Verifikation von Synchronitätsannahmen für Computernetzwerke.
Diplomarbeit, Embedded Computing Systems Group, Technische Universität Wien, May 2004. (in
German).

[12] Daniel Albeseder. Evaluation framework for partial synchronous algorithms in the Θ-model.
http://evalpsa.sourceforge.net, 2004.

[13] David L. Mills. RFC 1305: Network time protocol (version 3) specification, implementation, March
1992.

[14] Roland Höller, Martin Horauer, Günther Gridling, Nikolaus Kerö, Ulrich Schmid, and Klaus Schoss-
maier. SynUTC - high precision time synchronization over Ethernet networks. In Proceedings of
the 8th Workshop on Electronics for LHC Experiments (LECC’02), pages 428–432, Colmar, France,
September 9–13, 2002.

[15] Gérard Le Lann and Ulrich Schmid. How to maximize computing systems coverage. Technical
Report 183/1-128, Department of Automation, Technische Universität Wien, April 2003.

150

