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Abstract — This paper describes a system able to acquire, process and eliminate 
noise in continuous streams of data in real-time. The signal processing algo-
rithms were based on the discrete wavelet transform and employ a new approach 
to deal with border problems, allowing to process the data continuously. The sys-
tem was implemented using a DSP coupled to a digitizer through its external 
memory bus to guarantee deterministic behavior while maintaining some degree 
of flexibility in its configuration. The achieved performance and potential appli-
cations are discussed at the end of the text. 

1 Introduction 

In the last two decades denoising techniques based on the wavelet transform have 
come out as one of the most useful alternatives to those based on the Fourier trans-
form. The great advantage wavelets do offer is the ability to extract frequency infor-
mation from the signal while maintaining, to some degree, its time information. 
Moreover, the transform allows acting locally in the signal with minimal interference 
on its vicinity, so creating processing alternatives never achievable by other filtering 
mechanisms. When wavelets are used in real-time applications some particularities 
have to be considered. Due to the complexities involved in the transform, there are 
some tendencies to associate it to dedicated hardware architectures, like FPGAs or 
ASICs [2][3]. These approaches can bring some benefits, mainly related to the proc-
essing speed, but frequently lack some flexibility on parameters configuration and are 
harder to modify in the field. 

This paper presents a description of a data acquisition system aimed at processing 
digital data in real-time using wavelet techniques. The text begins with a brief descrip-
tion of the wavelet transform, followed by the algorithms that were developed to allow 
its application over continuous streams of data. The objective of this study is to pro-
vide a system capable of processing the data as fast as possible while offering some 
degree of flexibility in the choice of the wavelet, the number of decomposition levels, 
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the type of denoising technique and threshold level. These two criteria, speed and 
flexibility, lead to the several hardware and software decisions explained in the fol-
lowing. The structures used to implement the system are presented in sections 3 and 4, 
followed by an analysis of performance and some obtained results. 

2 The wavelet transform and the discrete wavelet transform 

2.1 The wavelet algorithms 

The wavelet transform (WT), as all time-frequency related transforms, was an at-
tempt to overcome the limitations imposed by the Fourier transform inability to de-
compose a signal while still maintaining its time information. The discrete counterpart 
of the WT, named discrete wavelet transform (DWT) [4], arose in the context of the 
multiresolution analysis theory and is implemented by a filter bank that decomposes 
the signal in successively coarser approximations and details, as shown in figure 1. H1
and H0 are, respectively, high-pass and low-pass complementary filters, dj+k,n are de-
tail coefficients at level (j+k) and aj+k,n are approximation coefficients. The circles 
containing down-arrows sided by 2’s represent the decimation by two operation. 

 Figure 1: filter bank for a 3 level DWT decomposition. 

The inverse discrete wavelet transform (IDWT) is obtained by a quadrature filter 
bank that is the mirror of the one shown in figure 1. This filter bank begins from the 
lowest level, which represents the coarser approximation, and progressively adds more 
and more details, until the original signal is recovered. The filter structure is shown in 
figure 2, where G1 and G0 are, respectively, the high and low-pass mirror filters of H1
and H0.

Figure 2: filter bank for the 3 level reconstruction.

The decimations are replaced by interpolations, shown as up-arrows followed by 2. 
For a specific wavelet filter of size M, the algorithms perform at most 2.N.M multipli-
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cations and 2.N.(M-1) additions, so the complexity bound is independent of the maxi-
mum number of decomposition levels. 

The way to implement the filter banks depends mainly on two factors: the intended 
use of the transform and the hardware characteristics. When the hardware is composed 
by only one processor, it is necessary to develop algorithms that mimic their cascade 
structure. The first algorithm developed for this task was named Pyramid Algorithm 
(PA) [4], but there are a number of others, usually fitted to specific data. 

 In this work the choice was to use a single DSP to perform both the DWT, IDWT  
and filtering algorithms, what has allowed a good balance between performance and 
flexibility. The system is under a prototype stage, so the purpose is to gather informa-
tion about processing speed and efficacy of various denoising algorithms. The results 
obtained from these studies can be used in later stages to specify an improved version 
involving other approaches like multiple processors or an hybrid system containing 
both ASICs and programmable devices. 

2.2 The RunningDWT and RunningIDWT algorithms 

The PA is an algorithm fitted to be performed by just one processor, so, when the data 
come in a continuous stream, it is usually advantageous to do a block processing to 
minimize the overhead caused by the data transfer. This imposes the need to deal with 
the borders of the sections, what can be made by several well-known techniques 
[1][5]. However, these techniques can incur in some overcomputation or false infor-
mation, so it is necessary to use them with some care [2][7]. 

The algorithms RunningDWT and RunningIDWT were developed to deal with the 
borders in a way as transparent as possible [8]. They were inspired in the overlap-save 
convolution method [9] and the Recursive Pyramid Algorithm (RPA) [10]. Figure 3 
shows how a 3 level decomposition is performed by these algorithms, using a wavelet 
filter of size M=4. The input is automatically segmented in sections of size 2J, where J
denotes the number of desired levels (in this example J = 3, so the sections have 23 = 
8 data). xn denotes the n-th input data, dj

n denotes the n-th detail of level j and aj
n the 

n-th approximation.  

Figure 3: three level decomposition using the RunningDWT algorithm. 
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The RunningDWT uses a matrix that keeps in its lines overlapping segments of each 
input section and the succeeding decomposed levels. The matrix has (J+1) lines, each 
with M cells. The first line stores the input samples while the others store the ap-
proximations calculated at each level while the algorithm evolves. The details are de-
livered as the output of the algorithm. Figure 4 shows the sequence of operations per-
formed for the decomposition of the first section (x0 through x7) of the above example, 
supposing the matrix is initially zeroed. 

Figure 4: sequence of operations performed by the RunningDWT algorithm. 

When the decomposition of the second section begins (x8 through x15) the matrix al-
ready holds the overlapping segments that resulted from the processing of the first 
section, so the border between them becomes transparent.  

After the decomposition of each section, the algorithm delivers the details of each 
level and the approximation of the last level in the order shown in (1). 
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All approximations computed in intermediary levels are thrown away, except those 
retained by the matrix. 

To do the reconstruction without relying on “padding” solutions it is necessary to 
take into consideration the delay introduced by every filter that composes the filter 
bank [8]. The only way to do that is reconstructing in the order shown in figure 5. The 
coefficients obtained from the decomposition of one section are used to reconstruct 
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the data of previous sections. The actual section will be reconstructed only after in-
coming sections be decomposed, thus causing an overall delay on the reconstructed 
signal.

Figure 5: reconstruction after a 3 level decomposition using the RunningIDWT. 

The RunningIDWT uses 2 matrixes, one to store the details furnished by the Run-
ningDWT (named D) and the other to store the approximations that are progressively 
reconstructed (named A2). Matrix A2 has J lines, each with (M+2)/2 cells. D also has 
J lines, but each has its own size since it is necessary to store a variable number of 
details at each level. All lines have a structure composed by (M-2)/2 + additional
cells, where the first term is responsible for the overlaps and the additional cells are 
computed as follow: 
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The reconstruction process follow a structure similar to the one performed by the 
RunningDWT, but in reverse order. For every M/2 details and M/2 approximations of 
the last level the algorithm reconstruct two approximations of the last but one level, 
two approximations of the last but two level and so on, until the original data are re-
covered. 

Besides allowing the decomposition and reconstruction transparently over the bor-
ders, the RunningDWT and RunningIDWT have the same computational load of the 
original PA. One disadvantage they have is that the matrixes used by the Run-
ningIDWT can exceed the storage of the PA if the decomposition is carried to deeper 
levels. At first sight this could be a problem, but since in most applications a decom-
position down to the 6th or 7th level is fairly sufficient, it is possible to overcome this 
problem through the judicious sectioning of the input, maintaining the storage in ac-
ceptable levels. In the processing of continuous streams of data, the size of the sec-
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tions will be determined by a trade-off between the available memory and the desired 
number of levels. At this moment the system works with vectors of size 1024, it is 
possible to decompose the input to a maximum of 10 levels. 

The wavelet filters chosen for this application were all members of the Daubechies' 
families of orthogonal wavelets [1][4]. This choice was made because they have the 
most compact support for a given number of vanishing moments, so allowing the low-
est computational loads. The family members DB4 to DB20 were implemented, but it 
is easy to introduce new members as necessary (the numbers following the DB abbre-
viature denotes the support of the wavelet and, so, the number of taps its filter has). 

The methods for denoising with wavelets follow a generic structure in which the 
original data are transformed by the DWT into a time-scale coefficient space and each 
coefficient is compared to a threshold level. The coefficients are modified if they are 
greater or smaller than this level and, afterwards, are used to reconstruct the signal. Up 
to now the system realizes soft and hard-thresholding [1], but one of the proposals in 
this work is to evaluate the efficiency of other thresholding techniques. 

3 Hardware configuration 

The hardware used in this development is shown as a block diagram in figure 6.  

Figure 6: schematic representation of the hardware used in the system. 

The input signals are fed into the system through signal conditioning and protection 
blocks, which are dependent on the application. The signals are then passed through 
Programmable Gain Amplifiers (PGA) that allow the adjustment of amplification or 
attenuation via software.  

The system offers two channels simultaneously sampled by independent A/D con-
verters, allowing a maximum sample rate of 70 MS/s with 12 bits of resolution. The 
A/Ds are controlled by a FPGA device, which interfaces to the DSP through its exter-
nal memory and control buses. The samples of channel A and B are grouped into one 
single 32 bit word, stored in the FPGA FIFO and transferred to the DSP in one single 

133



DENOISING OF SIGNALS IN REAL-TIME USING THE WAVELET TRANSFORM 

read operation. Though the maximum sample rate of the A/Ds is 70 MS/s, the DSP 
bus limits the real-time data transfer at approximately 17 MS/s. 

The DSP is responsible for the configuration, data transfer control and processing. A 
fixed-point device was chosen because they usually offer more processing speed than 
floating-point units (although they impose their own limitations [3]). The processor is 
a 720 MHz superscalar device with 2 independent register banks, 2 independent data-
paths with 8 parallel functional units, 2 levels of cache with up to 1 MB of internal 
memory, four 64-bit internal busses and packed data processing capability (SIMD 
architecture). The chip interfaces to a host computer through a JTAG interface both 
for programming and data presentation. 

4 Software configuration 

4.1 System overview 

Figure 7 shows an overview of the control and processing software.  

Figure 7: overview of the control and processing software. 

Data transfer is controlled by DMA, which generates an interrupt at every 256 
words reading. The DMA interrupt service routine (ISR) performs the separation of 
data of channel A and B and store them in two 1024 cells ping-pong buffers. These 
become full only after 4 FPGA interrupts, what allows the reduction of the overhead 
imposed by the control structures once the processing starts only when a larger 
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amount of data is available. The ping-pong buffers are also monitor buffers, so the 
operations of writing and reading are mutually exclusive. 

Every time the ISR tries to write to the buffer the later automatically tests if there is 
available room to store the data. If so, the ISR proceeds with the writing, otherwise it 
is advised and can take the necessary steps to correct the problem. When one task tries 
to read data that are not ready, it is blocked until one of the 1024 point vectors be-
comes available. Finally, the system continuously monitors the state of the ping-pong 
buffers and the FPGA FIFO using tasks that run in the processor's idle loop. This 
avoids overflowing and guarantee that the processing is being made in real-time. 

Data processing is performed by 2 concurrent tasks, one for each channel. The data 
from channel B is used to synchronise the acquisition to the mains power system, so 
only channel A data goes through the DWT. 

5 Results

The development process of a real-time system usually goes through a number of 
phases where it is gradually converted from a generic and architecture independent 
implementation to a high performance and architecture dedicated one. As one of the 
objectives of this work was to provide a system capable of processing the data as fast 
as possible, the control and processing algorithms were progressively refined using 
the phases shown in figure 8. As the system was restricted to a single processor, the 
refinement went on just to the phase of assembly coding. 

Figure 8: phases for algorithm optimisation. 

The first stages allow the highest performance gains, reaching up 300 to 400 % of 
speed-up. They involve optimisation through the following procedures: 
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− optimisation of memory access by transferring  multiple data in one single opera-
tion. This is possible because the processor has a wide memory bus and special-
ised instructions to perform wide transfers; 

− explicit use of the SIMD instructions the processor offers, which work with up to 
four operands in one single operation; 

− provision of additional information to allow optimisation of processor pipeline. 
This information allows the compiler to use a special set of instructions dedicated 
to pipelined execution. 

Table 1 gives the worst case execution times (WCET) for the main algorithms as 
measured by the DSP’s high-resolution internal clock.  

Algorithm name Execution time 
RunningDWT 144 µs
RunningIDWT 156 µs
DMA ISR (processing and storage) 1.70 µs

Table 1:WCET of the main algorithms. 

The attained performance allowed real-time processing with sample rates up to 3 
MS/s and 94 % of processor usage. Daubechies 4 wavelet and 8 levels of decomposi-
tion were used as comparison parameters. When using Daubechies 20 it is possible to 
go up to 1.7 MS/s in real-time. As expected, the performance is highly dependent on 
the chosen wavelet since this implies in changing the number of taps of the filters. 

Below there is an example of the denoising capabilities of the system. The original 
signal is a cardiogram like plot added to random noise. The Daubechies 6 wavelet was 
used and the decomposition was carried down to the 8th level. Hard-thresholding was 
used as the denoising method. 

a) Input data. 

Figure 8: example of denoising of a signal (vertical axis: A/D output value; horizontal 
axis: sample number). 
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b) Wavelet coefficients. 

c) Reconstructed signal after denoising. 

Figure 8: continued. 

6 Conclusion

This paper described the development of a real-time data acquisition and processing 
system aimed at the denoising of signals using the wavelet transform. The criteria that 
guided the development were both processing speed and flexibility, so a DSP-based 
architecture was chosen to optimize both. Data digitalization was accomplished by 
two independent A/D converters connected to the DSP bus through a FPGA device. 
This architecture, associated to software optimizations, allowed the achievement of 
sample rates as high as 3 MS/s while still processing in real-time. As can be seen in 
table 1, the system’s bottleneck are the processing algorithms, while the data transfer 
and storage are responsible by less than 1% of the computational load. Therefore, it is 
safe to suppose that it is possible to increase the performance by the use of a multi-
processor approach.

To enable the processing of the continuous stream of data two modified DWT and 
IDWT algorithms were implemented. They have as main feature the ability to decom-
pose and reconstruct the signal without relying on extension techniques. This allowed 
the transparent processing along the vector borders and eliminates the overcomputa-
tion and false information that usually appears when extension techniques are used. 

Denoising was made through the use of hard and soft-thresholding. These tech-
niques showed to be very hard to apply due to the fixed threshold level and empirical 
adjustments, so it is necessary to use them with some caution. As the system is under 
development the next phases will involve the study of more refined methods of 
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thresholding. In despite of this, the wavelet techniques showed to be very efficient as 
a complementary tool to the ones based on the Fourier theory. 

Potential applications of this system include on-line monitoring of high voltage 
equipment, transmission line surge detection and location mechanisms, automation 
and control systems, image processing systems, pattern recognition and so on.  
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