
Periodic Real-Time Scheduling for FPGA
Computers

Klaus Danne1 and Marco Platzner2

1Design of Parallel Systems Group,
Heinz Nixdorf Institute,

University of Paderborn, Germnay
danne@upb.de

2Computer Engineering Group,
Department of Computer Science,
University of Paderborn, Germany

platzner@upb.de

Abstract — Todays reconfigurable hardware devices, such as FPGAs, have high
densities and allow for the execution of several hardware tasks in parallel. This
paper deals with scheduling periodic real-time tasks to such an architecture, a prob-
lem which has not been considered before. We formalize the real-time scheduling
problem and propose two preemptive scheduling algorithms. The first is an adaption
of the well-known Earliest Deadline First (EDF) technique to the FPGA execution
model. The algorithm reveals good scheduling performance; task sets with system
utilizations of up to 85% can be feasibly scheduled. However, the EDF approach is
practical only for a small number of tasks, since there is no efficient schedulability
test. The second algorithm uses the concept of servers that reserve area and exe-
cution time for other tasks. Tasks are successively merged into servers, which are
then scheduled sequentially. While this method can only feasibly schedule task sets
with a system utilization of up to some 50%, it is applicable to large tasks sets as the
schedulability test runs in polynomial time. Equally important, the method requires
only a small number of FPGA configurations which directly translates into reduced
memory requirements.

1 Introduction
Reconfigurable hardware devices, the most prominent one being the field-programmable
gate array (FPGA), are general-purpose devices that can be programmed after fabrication.
SRAM-based FPGA variants can be re-programmed arbitrarily often, opening up the way
to FPGA-based computing. For a number of applications, FPGAs have been shown to out-
perform general-purpose processors, and even specialized processors, in performance and

1This work was partly developed in the course of the Graduate College 776 -Automatic Configuration
in Open Systems- and was published on its behalf and funded by the Deutsche Forschungsgemeinschaft.

117

KLAUS DANNE AND MARCO PLATZNER

Config.
Controller

CF 1
CF 2

...
CF n

Config.Files

Config
BUS

Data
BUS

DAC

I/O

DAC

...

FPGA

Figure 1: Target architecture of an embedded FPGA computer.

energy efficiency [1] [2]. Compared to application-specific integrated circuits (ASICs)
FPGAs pay an area and performance penalty, but they offer flexibility. Todays largest
FPGAs have densities beyond 10M gates and are fabricated in cutting-edge silicon tech-
nologies, which often nullifies the ASICs’ speed and area advantages over FPGAs. A
recent trend in FPGAs is to integrate them with processor cores and memories on a single
chip. Such configurable systems on chip are promising targets for the implementation of
demanding future classes of embedded systems, including ambient intelligent systems [3]
and wearable computers [4].

Several recent research efforts focused on the mapping of hardware circuits (tasks) onto
FPGAs. As FPGAs are reconfigurable, their silicon area can be reused for different tasks
over time. As modern FPGAs have high densities, several tasks can be mapped to the
device at the same time, enabling true parallel execution. Placement and scheduling of
aperiodic tasks to FPGAs has already been discussed [5] [6], including realtime tasks [7].

In contrast to previous work, we deal with scheduling periodic realtime tasks to FP-
GAs, a problem that has not been addressed yet. The typical embedded reconfigurable
target architecture is shown in Figure 1, and comprises an FPGA, a controller, memory,
and various I/O devices. Besides the embedded software and data sections, the memory
stores the configurations for the logic resource. For such an architecture, we are inter-
ested in devising scheduling algorithms for periodic real-time tasks respecting following
objectives:

– high scheduling performance: We want to be able to generate feasible schedules for
a wide range of task sets.

– efficient schedulability test: We want to quickly decide whether all tasks will meet
their deadlines in a given schedule.

– small number of required FPGA configurations: The number of configurations de-
termines the overall time spent for reconfiguration as well as the required amount of
embedded memory.

The contribution of this paper lies in the formal modeling of the scheduling problem
and in the presentation of two scheduling algorithms: EDF-NF and MSDL. EDF-NF is
a straight-forward adaption of the EDF algorithm to our specific system model. While
revealing remarkable scheduling performance, EDF-NF lacks an efficient schedulability
test and requires an unbearable number of FPGA configurations. MSDL comes with a

118

PERIODIC REAL-TIME SCHEDULING FOR FPGA COMPUTERS

test of acceptable efficiency and keeps the number of required configurations small, at the
price of a decreased scheduling performance.

2 Related Work

Hardware multitasking on FPGAs and other reconfigurable hardware devices has been
studied in, e.g., [6, 5, 8, 9, 10]. Most authors assume a 2-dimensional area model that
assumes partial reconfigurability and treats tasks as relocatable rectangles which can be
placed anywhere on the FPGA device. The authors focus on placement and scheduling
strategies in off-line and on-line application scenarios, mostly optimizing cost functions
such as the total make span or the average response time. To the best of our knowledge, [7]
is the only related work considering FPGA real-time scheduling. The practical realization
of such systems on current technology rises several issues: First, partial reconfiguration is
often limited in practice by device architectures and insufficient tool support. Some FPGA
families are not partially reconfigurable at all, others, e.g., the Xilinx Virtex families,
are partially reconfigurable only in full columns. Second, the issue of communication
between tasks is rarely considered in the models used. Finally, related projects require
tasks to be relocatable, which might be difficult to achieve for modern FPGA architectures
that are not fully homogeneous.

Our work differs in that we use full FPGA reconfiguration and focus on preemptive peri-
odic real-time scheduling. The full reconfiguration model can be used on all SRAM-based
FPGAs and can be realized using standard design implementation tools. Task preemption
requires a runtime system to be able to save the state of a task and, later on, resume it.
Concepts and implementations of preemptive execution environments on FPGAs can be
found in [11, 12, 10].

For periodic real-time scheduling on single processor systems, the earliest deadline first
algorithm (EDF) has been proven optimal. EDF can schedule task sets with processor uti-
lizations of up to 100%. Multiprocessors can execute several tasks in parallel, similar to
our FPGA model. Real-time scheduling problems on multiprocessors are in general NP-
hard. There exist two basic approaches, namely the partitioning and the non-partitioning
method [13]. In the partitioning method, all instances of a task are executed on the same
processor. Therefore, the overall task set is partitioned into m (number of processors) sub-
sets and each subset is scheduled on another processor using single processor algorithms
such as EDF. In the non-partitioning method, a task is allowed to execute on a different
processor after preemption. This can be done by a multiprocessor derivate of EDF, which
is suboptimal. A schedulability test for this case is given in [14].

Our scheduling problem differs from the single processor scheduling problems in that
we have several hardware tasks executing in parallel. The difference to multiprocessor
scheduling lies in the fact that hardware tasks share the single area resource provided by
the FPGA. There is no natural way to partition the task set onto subareas of the FPGA.
Rather, we present a non-partitioning EDF variant in Section 4.

3 Problem Modeling and Metrics

In this section, we introduce the task and resource model used in our work, define the
scheduling problem, and discuss utilization metrics.

119

KLAUS DANNE AND MARCO PLATZNER

Ti Pi Ci Ai UT
i US

i

T1 4 2 1/2 1/2 1/4
T2 6 5 1/4 5/6 5/24
T3 12 3 3/4 1/4 3/16

1.58 0.65

Table 1: Example task set Γ∗

0 1 2 3 4 5 6 7 8 9 10 11 12

T1T2T3 T2 T1T2T3T1 T1

T1

T2

T3
T1

T3

T2

T1

T1,T2 T2,T3 T2,T3 T2T1,T2 T1 T1,T2 T2

FP
G

A
ar

ea

Figure 2: Preemptive schedule of three peri-
odic FPGA tasks.

3.1 Task and Resource Models

We consider a set of periodic tasks Γ. Each task Ti ∈ Γ refers to some computation
which has to be performed periodically. The instances Ti,j of task Ti are released with
period Pi. That is, the release time of instance Ti,j+1 is given by ri,j+1 = ri,j + Pi, where
ri,j is the release time of instance Ti,j . Ci denotes the worst case computation time of
task Ti, which is the same for all of its instances. The finishing time of task instance
Ti,j is denoted by fi,j . In our model, we assume real-time tasks with deadlines equal to
periods. Hence, the deadline of a task instance Ti,j is given by the release time of the
next instance, ri,j+1. Finally, the amount of reconfigurable logic resources a task requires
is given by Ai. We normalize all resource requirements to the available resource offered
by the FPGA. Assuming that no single task requires more resources than available, we
get Ai ∈ [0 . . . 1] (We assume that a computational task whose area exceeds the FPGA is
modelled as several tasks with area less than one).

The reconfigurable hardware device offers a certain amount of computational resources,
e.g., the configurable logic blocks of an FPGA, which is also referred to as the area of
the device. We normalize this area to 1. The device can execute any set R ⊆ Γ of
tasks simultaneously, as long as the amount of resources required by the task set does not
exceed the available area, i.e.,

∑
Ti∈R Ai ≤ 1.

A running instance of a task Ti can be preempted by another task Tj before its comple-
tion and, later on, be resumed. More general, any set of running tasks R can be preempted
to execute a new set of tasks R̃. Technically, the runtime system has to interrupt the ex-
ecution of R and to save the contexts of all tasks Ti ∈ R. Then, the FPGA is fully
reconfigured with a new configuration including all tasks Tj ∈ R̃. When R is sched-
uled for execution again, the previously saved contexts of Ti ∈ R are restored and R is
restarted.

The time for the preemption and restore processes is neglected in our scheduling anal-
ysis. For current FPGA devices, these times are in the range of a few to a few tens of
milliseconds. It must be mentioned that many research efforts address the reduction of
reconfiguration times. The most promising approaches include multi-context devices and
coarse-grained architectures.

As an example, Figure 2 displays a possible schedule for the task set shown in Table 1.
The upper part of Figure 2 indicates the release times and deadlines for the tasks, as well

120

PERIODIC REAL-TIME SCHEDULING FOR FPGA COMPUTERS

as the running tasks. The lower part of Figure 2 illustrates the tasks’ areas and the sharing
of the FPGA area over time. Overall, four different FPGA configurations are needed
for this schedule. The schedule shown can easily be proven feasible, because every task
instance meets its deadline for the entire hyper-period of the task set (which amounts to
12 time units). The hyper-period is the least common multiplier of all task periods in the
task set. A feasible schedule defined over the hyper-period can be repeated an infinite
number of times without any missed deadline.

Formally, a schedule for the task set Γ assigns a set of running tasks Rk ⊆ Γ to every
point in time k, such that

∑
Ti∈Rk

Ai ≤ 1. No instance of a task must start execution
before its release time. We call the schedule feasible, if each task instance finishes its
execution before its deadline, i.e., ∀i, j : fi,j ≤ ri,j+1.

3.2 Utilization Metrics

We define two utilization metrics to measure the computational load generated by a task
set Γ. These metrics are central to the scheduling algorithm proposed in Section 5. Similar
to the processor utilization factor defined in single processor real-time scheduling, we
define the time-utilization factor of a task set Γ to be

UT (Γ) =
∑
Ti∈Γ

Ci

Pi

. (1)

For the special case that all tasks are executed sequentially, U T is the fraction of time
the FPGA spends executing tasks whereas 1−U T is the idle time. While such a schedule
can mean an enormous waste of resources, it has two advantages. First, it allows to rely
on efficient schedulability tests known from single processor scheduling. Second, the
number of required FPGA configurations is bound by the number of tasks.

Improved scheduling techniques will try to better utilize the FPGA resources and exe-
cute several tasks in parallel. To describe the computational load for such a situation, we
define as a more expressive metric the system-utilization factor of a task set Γ as

US(Γ) =
∑
Ti∈Γ

Ci

Pi

Ai. (2)

US presents the fraction of the area-time product occupied by a task set. Visually, U S

corresponds to the gray areas in the schedule of Figure 2. The white areas in the schedule
of Figure 2 correspond to the unused computational resource.

Obviously, we cannot find a feasible schedule for a task set with U S > 1. Whether
a feasible schedule exists for a task set with US ≤ 1 depends on the specific relations
among the task properties, in particular the area requirements Ai. UT (Γ) and US(Γ) are
also defined for single tasks, as they are (minimal) instances of task sets. Table 1 shows
the time and system utilization factors for the example tasks as well as for the complete
task set.

As we cannot expect to fully utilize the FPGA area, the resulting system utilization
will generally stay below 1. In this paper, we use U S to experimentally rate the quality
of a scheduling algorithm. We do not derive bounds for U S that can be used to decide
schedulability for a given algorithm.

121

KLAUS DANNE AND MARCO PLATZNER

Alg. 1 Earliest Deadline First - Next Fit
Require: list Q of ready tasks, sorted by increasing absolute deadlines

1: procedure EDF-NF(Q)
2: R ← ∅
3: Arunning = 0
4: for i ← 1, |Q| do
5: if Arunning + Ai ≤ 1 then
6: R ← R ∪ Ti

7: Arunning = Arunning + Ai

8: end if
9: end for

10: return R
11: end procedure

4 EDF-NF Scheduling
For single processor real-time systems, the Earliest Deadline First (EDF) algorithm which
executes all ready tasks in the order of their absolute deadlines, has been proven optimal.
EDF can schedule any task set which utilizes the processor less or equal to 100%. For an
m-processor machine, the EDF strategy is defined to execute always the m tasks with the
m smallest absolute deadlines among all ready tasks. Multiprocessor EDF is not optimal,
since for some task sets a feasible schedule exists which is not found by EDF.

We can apply the EDF schedulability test to a schedule that executes all tasks sequen-
tially on the FPGA. Whenever UT ≤ 1, the task set is guaranteed to be feasibly scheduled
by EDF without any need to group several tasks into one FPGA configuration. By ex-
ecuting tasks in parallel we increase the range of task sets for which feasible schedules
can be found. Grouping tasks together can further be beneficial to reduce the number of
configurations and, in turn, reconfiguration time and memory requirements.

To this end, we adopt the simple EDF strategy for our execution model and present the
scheduling algorithm EDF - Next Fit (EDF-NF), shown in Alg. 1. Similar to EDF for
single (and multiprocessor) systems, EDF-NF keeps a list of all tasks which have been
released and have not yet finished in a ready queue Q. The ready queue is sorted by
increasing absolute task deadlines. To determine the set R of running tasks, EDF-NF
scans through the ready list. A task Ti is added to the set of running tasks R, as long as
the sum of the area of all running tasks Arunning remains less or equal to one. Whenever
the next task cannot be added, EDF-NF proceeds in the ready queue and tries to add tasks
with longer absolute deadlines. At this point, EDF-NF diverges from the pure EDF rule.
The motivation for adding tasks in next-fit manner is to improve the device utilization.

The procedure EDF-NF is run whenever a new instance of a periodic task is released
(added to the ready list) or running instances of tasks terminate. The EDF-NF algorithm
shown in Alg. 1 is performed in O(n) time, where n is the number of tasks. Unfortunately,
there is no efficient schedulability test. To prove schedulability, we have to simulate
task executions and terminations for the complete hyperperiod. Further, the number of
configurations can grow fairly large which is a major disadvantage of this algorithm.

122

PERIODIC REAL-TIME SCHEDULING FOR FPGA COMPUTERS

5 Server-based Scheduling

In this section, we present a scheduling technique called Merge Server Distribute Load
(MSDL). To construct a schedule MSDL uses the concept of server tasks, or briefly
servers. A server is a periodic task that reserves execution time and FPGA area for other
tasks. We define a server as Si = (Ri, Pi, Ci, Ai), where Ri = {Ta, Tb, . . . } ⊆ Γ is a set
of tasks for which execution time and area is reserved. Pi, Ci, Ai denote the period, the
computation time and the area, respectively. The area for a server is set to be the sum of
all tasks represented by the server, Ai =

∑
Tk∈Ri

Ak. Consequently, whenever the server
Si is running, all tasks it represents are running.

The rationale of the MSDL algorithm is to construct a set of servers Ω from the original
task set Γ, such that any feasible schedule for Ω implies a feasible schedule for Γ. More
specifically, MSDL constructs a set of servers Ω by properly merging tasks together for
parallel execution. The resulting servers are then scheduled for sequential execution on
the FPGA with single processor EDF. Feasibility for the resulting set of servers is thus
efficiently checked by the utilization test U T (Ω) ≤ 1.

5.1 The Merge-server Distribute Load (MSDL) Algorithm

Algorithm 2 shows the pseudo code for the MSDL technique. First, each of the initial
tasks is turned into a server (line 3). Then the main loop is entered in which, iteratively,
a server pair is identified and merged if possible. The selection of the two servers Sx

and Sy that should be merged is done by the function selectValidPair() (line 8). For the

Alg. 2 Merge Server - Distribute Load
1: procedure MSDL(Γ)
2: Ω ← ∅
3: for all Ti ∈ Γ do � init
4: Si ← ({Ti}, Pi, Ci, Ai)
5: Ω ← Ω ∪ Si

6: end for
7: loop
8: Sx, Sy ← selectV alidPairToMerge(Ω)
9: if no pair found then

10: return Ω � exit
11: end if
12: Sz ← (Rx ∪ Ry, Px, Cx, Ax + Ay) � Py ≤ Px

13: Cx ← Cx − takeOverT ime(Sx, Sz)
14: Ω ← Ω ∪ Sz � add server
15: Ω ← Ω \ Sy

16: if Cx ≤ 0 then
17: Ω ← Ω \ Sx

18: end if
19: end loop
20: end procedure

123

KLAUS DANNE AND MARCO PLATZNER

implementation of this function, several heuristics are conceivable. In our current version
we employ a greedy strategy that select the pair of servers giving the greatest reduc-
tion in time utilization UT (Ωold) − UT (Ωnew) per modest increase of system utilization
US(Ωnew) − US(Ωold).1 Any valid pair of servers Sx and Sy must have a disjunct set of
represented tasks (Rx ∩ Ry = ∅) and must jointly fit onto the FPGA (Ax + Ay ≤ 1).

If no valid server pair could be found, the algorithm exits and returns Ω as the final
set of servers (line 10). Otherwise, the servers Sx and Sy are merged. Without loss of
generality, we can assume that Sy is the server with the shorter period. Then, a new server
Sz is created representing all tasks of the two original servers (line 12). The period and
the computation time for Sz is set equal to those of Sy. Therefore, Sz is a full replacement
of Sy, and Sy can be removed from Ω. The computation time of Sx is reduced, since the
new server Sz reserves area and computation time for the tasks of Sx as well. The actual
computation time reduction depends on how often the new server Sz executes within the
period of Sx. A pessimistic approximation for the reduction is given by

Cx ← Cx − Cz(Px/Pz
 − 1). (3)

By a more involved analysis it can be shown that the reduction time of server Sx reduces
to Cx ← Cx − f(Sx, Sz), with

f(Sx, Sz) = min
{

Cz(Px/Pz
 − 1) + max
{
2Cz((Px/Pz
 + 1)Pz − Px), 0

}
,

Cz 	Px/Pz
 + max
{
2Cz((Px/Pz
 + 2)Pz − Px), 0

}}
.(4)

Table 2 continues the example from Section 3. The table shows the set of servers Ω∗
k

generated in each iteration k. Initially, the servers Ω∗
0 = {S1, S2, S3} are created. In the

first iteration, S1 and S2 are selected and merged into S4. S2 receives the new computation
time C2 ← C2 − 2 = 3. The server with the shorter period, S1, is removed. In the second
iteration, the residual S2 and S3 are merged into S5. Not only the server with the shorter
period is removed, but also S3 since its computation time is reduced to zero. Ω∗

2 is the final
server set, since neither R3, R4 are disjunct nor A3 + A4 ≤ 1. As shown in Table 2, the
time utilization factor UT (Ω∗

2) = 1. Consequently, Ω∗
2 can be feasibly scheduled by EDF.

The resulting schedule is shown in Figure 3. The figure also indicates the original tasks
of Γ∗ executed inside the servers. Compared to the schedule given in Figure 2, MSDL
requires only two FPGA configurations.

Table 2 also lists the system utilization factor US
i which increases over the iterations,

since larger severs will reveal more idle areas and times inside their reservations. In
essence, MSDL trades system utilization for time utilization to allow for an efficient
schedulability test and to reduce the number of FPGA configurations.

1Ωold denotes the task set before, whereas Ωold denotes the task set after merging the selected pair of
servers.

124

PERIODIC REAL-TIME SCHEDULING FOR FPGA COMPUTERS

Si Ri Pi Ci Ai UT
i US

i

S1 T1 4 2 1/2 1/2 1/4
S2 T2 6 5 1/4 5/6 5/24
S3 T3 12 3 3/4 1/4 3/16

1.58 0.65

��S1 T1 4 0 1/2 1/2 1/4
S2 T2 6 3 1/4 1/2 1/8
S3 T3 12 3 3/4 1/4 3/16
S4 T1, T2 4 2 3/4 1/2 3/8

1.25 0.69

��S2 T2 6 0 1/4 1/2 1/8

��S3 T3 12 0 3/4 1/4 3/16
S4 T1, T2 4 2 3/4 1/2 3/8
S5 T2, T3 6 3 1 1/2 1/2

1 0.88

Table 2: Servers generated for the example
task set Γ∗ by the MSDL (Merge Server Dis-
tribute Load) algorithm

S4S5

0 1 2 3 4 5 6 7 8 9 10 11 12

S4,S5

S1
S2

S1
S5

S1
S5T1 T1 T1

T2 T2 T2 T2 T2 T2

T3

S4 S4

S4 S4,S5

S5 S5 S4 S5

F
P

G
A

ar
ea

Figure 3: Schedule of server task set gener-
ated by MSDL

6 Simulation Results

We have conducted simulation experiments with synthetic workloads to evaluate the
scheduling performance of the EDF-NF and MSDL algorithms. We have generated ran-
dom task sets with varying values for the system utilization factor U S(Γ). To this end, we
have proceeded as follows: We have chosen an interval [a, b] ⊂ N for the tasks’ compu-
tation time, an interval [a, b] ⊆ [0, 1] for the tasks’ area, and an interval [a, b] ⊆ [0, 1] for
the tasks’ system utilization factor. Finally, we have set a bound ÛS ≤ 1 for the system
utilization of the entire task set. Then, new tasks T have been created one by one with
computation times, areas, and periods equally distributed in the intervals given above.
Tasks have been added to the task set, as long as US ≤ ÛS .

The randomly generated task sets have been scheduled with the EDF-NF and MSDL
algorithms. Figure 4 shows the percentage of feasible scheduled task sets for both tech-
niques over the task set’s system utilization factor. For the curves denoted by n=small,
task areas Ai were equally distributed in [0.2, 0.4], and computation times and periods
were chosen such that the time utilization factor U T

i is equally distributed in [0.2, 0.4].
These settings result in task sets of approximately 10 tasks on average. As expected, Fig-
ure 4 shows clearly the superiority of EDF-NF over MSDL in scheduling performance.
EDF-NF is able to schedule about 50% of the task sets with a system utilization factor
around 85% and accepts almost all task sets with US less than 75%. In contrast to that,
MSDL is able to schedule only few task sets with a US exceeding 70%, and achieves an
acceptance rate of 50% for task sets with a US around 55%.

For the curve denoted by n=medium, task areas Ai were equally distributed in [0.1, 0.2],
and computation times and periods were chosen such that the time utilization factor U T

i

is equally distributed in [0.1, 0.2]. These settings result in task sets of approximately 40
tasks on average. MSDL performs slightly worse than on smaller task sets. For EDF-NF,

125

KLAUS DANNE AND MARCO PLATZNER

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

US(Γ)

pe
rc

en
ta

ge
 o

f f
ea

si
bl

y
sc

he
du

le
d

ta
sk

 s
et

s

MSDL n=small
MSDL n=medium
EDF−NF n=small

Figure 4: Percentage of feasibly scheduled task sets over task set’s system utilization
factor by MSDL and EDF-NF

however, we could not gain results as the EDF-NF schedulability test did not terminate in
reasonable time.

7 Conclusion

We have discussed the problem of real-time scheduling onto FPGA computers and have
presented two scheduling algorithms, EDF-NF and MSDL. EDF-NF is much better than
MSDL in the sense that it can generate feasible schedules for task sets with higher system
utilization. The experiments, however, emphasized one benefit of MSDL: an efficient
schedulability test. For larger real-time task sets that need a schedulability guarantee,
EDF-NF is not an option.2 The second benefit of MSDL lies in the reduced number of
FPGA programming files, as demonstrated in Section 5.

In future work we will emphasize this advantage by a quantitative evaluation of the
number of required programming files by EDF-NF compared to MSDL based on further
simulations. Moreover, we plan to develop and evaluate different heuristics for selecting
the servers to be merged. One goal is the further reduction of the number of programming
files. In addition we will incorporate the modelling of the time overhead resulting from
FPGA reconfiguration and state saving during task preemption in order to increase the
accuracy of our results.

2The hyperperiod of a task set grows extremely fast. For example, for task sets with periods bounded by
100, the worst case hyperperiod exceeds 4 × 109 for 5 tasks, and 3 × 1018 for 10 tasks.

126

PERIODIC REAL-TIME SCHEDULING FOR FPGA COMPUTERS

References
[1] Oskar Mencer, Martin Morf, and M. J. Flynn. Hardware software tri-design of encryption for mobile

communication units. In Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), volume 5, pages 3045–3048, 1998.

[2] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. Rabaey. Evaluation of a low-power reconfigurable
DSP architecture. In Proceedings of the 5th Reconfigurable Architectures Workshop (RAW), volume
1388, pages 55–60. Springer, 1998.

[3] Rudy Lauwereins. Creating a World of Smart Re-configurable Devices. In Proceedings of the 12th
International Conference on Field-Programmable Logic and Applications (FPL), pages 790–794,
2002.

[4] Christian Plessl, Rolf Enzler, Herbert Walder, Jan Beutel, Marco Platzner, Lothar Thiele, and Gerhard
Tröster. The Case for Reconfigurable Hardware in Wearable Computing. Personal and Ubiquitous
Computing, pages 299–308, October 2003. Springer-Verlag.

[5] J. Teich, S. Fekete, and J. Schepers. Optimization of dynamic hardware reconfigurations. The J. of
Supercomputing, 19(1):57–75, May 2000.

[6] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template placement for reconfigurable computing
systems. IEEE Design and Test of Computers, pages 68–83, March 2000.

[7] Christoph Steiger, Herbert Walder, and Marco Platzner. Operating Systems for Reconfigurable
Embedded Platforms: Online Scheduling of Real-time Tasks. IEEE Transactions on Computers,
53(11):1392–1407, November 2004.

[8] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt. Dynamic scheduling of
tasks on partially reconfigurable FPGAs. IEE Proceedings – Computers and Digital Techniques,
147(3):181–188, May 2000.

[9] Herbert Walder and Marco Platzner. Reconfigurable Hardware Operating Systems: From Design
Concepts to Realizations. In Proceedings of the 3rd International Conference on Engineering of
Reconfigurable Systems and Architectures (ERSA), pages 284–287. CSREA Press, June 2003.

[10] H. Simmler, L. Levinson, and Reinhard Manner. Multitasking on FPGA coprocessors. In FPL, pages
121–130, 2000.

[11] Klaus Danne. Memory management to support multitasking on fpga based systems. In Proceedings
of the International Conference on Reconfigurable Computing and FPGAs (ReConFig04) ISBN 970-
692-169-9. Mexican Society of Computer Science, SMCC, 20 - 21 September 2004.

[12] Klaus Danne. Operating systems for fpga based computers and their memory management. In ARCS
2004 Organic and Pervasive Computing, Workshop Proceedings, volume P-41 of GI-Edition Lecture
Notes in Informatics (LNI), Bonn, 26 March 2004. Köllen Verlag.

[13] Björn Andersson and Jan Jonsson. Fixed-priority preemptive multiprocessor scheduling: to partition
or not to partition. In RTCSA, pages 337–346, 2000.

[14] Joel Goossens, Sanjoy Baruah, and Shelby Funk. Real-time scheduling on multiprocessor. In Pro-
ceedings of the 10th International Conference on Real-Time System, 2002.

127

