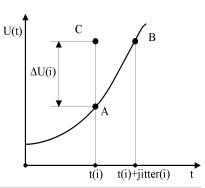
Soft Real-Time Acquisition in Windows XP

WISES`05, 20 May 2005, Hamburg, Germany


Justin Cinkelj, Matjaz Mihelj, Marko Munih

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Real time systems

- Event or time triggered
- Hard real-time robot control
 - Control delay, period, jitter, transient error
- Soft real-time data acquisition
- Jitter introduces
 error

ALLADIN project – measurement &

Purpose

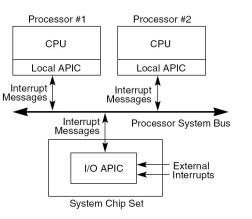
measurement & analysis system in stroke rehabilitation

- 8 6-axis force/torque sensors
- Sample rate at sensor is 8 kHz

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Software platform

- Software running on Windows XP
- Human movements bandwidth up to 10 (30) Hz => sample rate 100 Hz
- Jitter below 1 ms
- During acquisition is PC lightly loaded
 - Video playback
 - Network communication
 - Reading/writing to/from hard disk


Tested approaches

- 2 tested approaches, both in a driver
- High priority working thread
- Local advanced programmable interrupt controller (LAPIC) timer interrupt
- Testing on loaded and unloaded system
- Performance was assessed based on
 - Sampling time histograms
 - Maximum jitter

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

LAPIC

- It's part of the CPU
- Receives interrupts from external HW via IO/APIC
- Sends interrupts to the processor core according to priority
- · Contains a timer

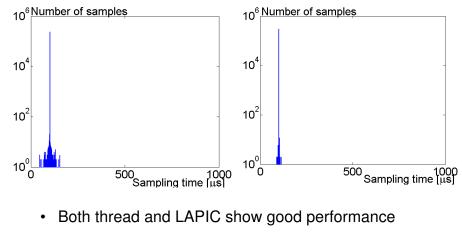
High priority thread

- · Has highest possible priority
- Can't be interrupted by other threads
 Dual processor PC required
- Can be interrupted by interrupts
 - Interrupt service routines
 - Deferred procedure calls

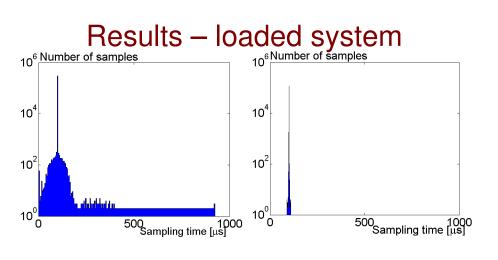
Faculty of Electrical Engineering, University of Ljubljana, Slovenia

LAPIC timer

- One shot or periodic interrupts
- Frequency of the system bus (100 MHz)
- Selectable interrupt number/priority
- Can be masked with CLI instruction
- Is disabled on uniprocessor systems


 Dual processor PC is needed

Performance assessment


- · Loaded and unloaded system
- At 5 and 10 kHz
- 2 different PCs (500 MHz, 2.8 GHz)
- Loaded system
 - Compressed video, 3D OpenGL graphics
 - File copied over network to local disk
 - Remaining time used by 2 user mode threads

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Almost no samples with jitter bigger than 10 μs

- Thread jitter typically below 100 μs
- LAPIC jitter typically below 10 μs

Results – maximum jitter

		unloaded	loaded
		10 kHz	10 kHz
System 1	Thread	53.6	823.6
	LAPIC	11.2	11.3
System 2	Thread	27.0	227.2
*	LAPIC	46.6	40.6

- Thread jitter is worst on loaded system
- LAPIC jitter is less dependent on loading

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Conclusions

- LAPIC gives lower jitter
- · Is less sensitive to the system load
- Jitter could be minimized by use of a time buffer
- Dual processor PC required
 - Hyperthreading is sufficient
- Bad drivers (CLI instruction) can cause unlimited delay

Faculty of Electrical Engineering, University of Ljubljana, Slovenia

Thank you for your attention

Faculty of Electrical Engineering, University of Ljubljana, Slovenia