
An Application of a Formal Approach for
Distribution of Real-time Control

Thanikesavan Sivanthi1, Ulrich Killat1, Kishore Angrishi2

1Department of Communication Networks,
Hamburg University of Technology, Hamburg, Germany
{thanikesavan.sivanthi,killat}@tuhh.de

2Operating Facility Hamburg,
luftfahrtgeräte gauting gmbh, Hamburg, Germany
kishore.angrishi@lgg-gauting.de

Abstract — A system which provides a set of control functions on time is referred
as a real-time control system (RTCS). In a traditional RTCS, a set of tasks running
in a central controller provide the required system control. The recent technological
advances have made it possible to embed controllers with sufficient computing power
directly in the end control devices. These devices also have a communication inter-
face by means of which they can communicate with the other devices via a broadcast
bus. These devices are referred to as intelligent nodes. A network of such intelli-
gent nodes can be used to perform the same control functions as that of a centralized
RTCS in a distributed manner. This paper discusses an application of a formal ap-
proach to distribute the control of a centralized RTCS over a set of intelligent nodes
with an example.

1 Introduction
Traditionally, a RTCS uses a centralized control paradigm. In such a system, a controller
runs a set of tasks to control the dumb end control devices (e.g.) sensors, actuators. This
system has many disadvantages like poor scalability and less robustness to failures. The
end control devices today have an embedded microcontroller and a communication bus
interface unit. These devices are referred to as intelligent nodes. A network of such
intelligent nodes, which could perform the same control functions of a centralized RTCS
is referred to as a decentralized real-time control system (DRTCS). In a DRTCS, each
node performs local controls and when needed communicates with the other nodes via a
broadcast bus to provide global controls. There are many advantages in such a system
(e.g.) good scalability, good modularity and better robustness to failures. This led to a
paradigm shift in the field of RTCS from centralized to decentralized control.

The interesting question is how one can distribute the control tasks of a centralized
RTCS to a set of nodes. There are different approaches for distributing the control, many

103

SIVANTHI, KILLAT, ANGRISHI

of them are based on heuristics [1], [2], [3] and [4]. In this paper we describe a formal
approach, which models the control software using task graphs and with the help of an
integer linear program [5] distributes the tasks over the nodes of a DRTCS. The rest of the
paper is organized as follows. Section 2 describes the formal approach for distributing the
real-time control. Section 3 applies the formal approach to a potable water control system
of an aircraft. The paper concludes with Section 4.

2 Formal approach for decentralization of real-time control
The control software of a RTCS consists of several tasks. The tasks may be periodic or
aperiodic. A periodic task executes once every time period T , also called as the task pe-
riod. An aperiodic task executes on occurrence of an event. The interarrival time between
any two consecutive arrivals of an event varies widely. Each task is a sequential execution
of elementary computing functions or modules (e.g.) a simple control task consists of
sense, process and actuate modules which perform the sensing, processing and actuating
functions and which are executed in that order. There can be precedence constraints be-
tween two modules, if a module of a task depends on the data from another module of
the same or different tasks. The decentralization of real-time control means devolving the
control from a central controller to a set of intelligent nodes. This involves the distribution
of the modules of the tasks over the nodes of a DRTCS. The distribution should be done in
a manner such that all the tasks finish before their deadlines. The distribution should also
consider the resource constraints namely, the maximum allowed utilization of each node
and the bus. Hence the distribution problem could be seen as an allocation and scheduling
problem with the following constraints.

Constraints for allocation:

1. Utilization of each node is less than or equal to the maximum allowed utilization of
that node.

2. Utilization of the bus is less than or equal to the maximum allowed utilization of the
bus.

3. A module which performs functions that are local to a node should be assigned to
that node.

4. Incase of fault-tolerance, the redundant modules must not be assigned to the same
node.

Constraints for scheduling:

1. The first module of a task can never be released before the task’s release time and
the last module of a task must finish before the task’s deadline.

2. A precedence constrained module is scheduled only after the execution of all of its
predecessor modules and their communications to this module.

3. A non-precedence constrained module can begin its execution anytime in a node but,
its execution can never overlap with the execution of the other modules assigned to
the same node.

104

A FORMAL APPROACH FOR DISTRIBUTION OF REAL-TIME CONTROL

In RTCS there can be many tasks, hence the distribution problem is inherently complex.
But the complexity can be handled by considering the distribution for each operation
mode of the system. This is because, in each operation mode there are only certain tasks
which are activated and running. In our approach at first we identify the different modes
of operation of the system. Then for each mode of operation we built an acyclic task
graph [5], which consists of all tasks that are executed in that operation mode. In [5],
we considered that all tasks are periodic, but in RTCS there are also aperiodic tasks. If
the minimum interarrival time between two consecutive event arrivals Ti which trigger an
aperiodic task is known then, the aperiodic task can be viewed as a periodic task with task
period equal to Ti. Thus, all aperiodic tasks of a RTCS can be considered as periodic tasks
with their deadlines equal to their periods. The vertices of the task graph represent the
modules of all tasks in one hyperperiod. A hyperperiod is defined as the least common
multiple of all task periods. The directed edges of the graph have a weight equal to the
number of messages communicated between the modules. An edge represents the data
dependency of a module on another module. No edge exists between modules, if there is
no dependency between them. The task graph also details the attributes of all tasks. The
attributes are the worst case execution times of the modules of the tasks, the tasks release
times and their deadlines.

The integer linear program (ILP) discussed in [5] is used to allocate and schedule the
tasks modules and their communications in the nodes and the bus respectively. The ILP
has an objective function which minimizes the maximum of all differences between the
completion times and the deadlines of all tasks. The allocation and resource constraints
are formulated as constraints to the objective function. A feasible schedule exists only
if the resulting objective function has a value less than or equal to zero (i.e.) only when
all tasks finish before their deadlines, while satisfying all the allocation and scheduling
constraints. The result of the ILP is a feasible global schedule, which is an allocation and
scheduling plan for the modules of all tasks. The global schedule is derived only for one
hyperperiod. This is because the schedule derived for one hyperperiod repeats for every
subsequent intervals of length equal to one hyperperiod.

3 An application: Potable water control system
The existing potable water control system in an aircraft is a complex centralized RTCS,
with more than fifteen devices controlled by a controller. The system performs vari-
ous tasks mostly related to water quantity monitoring and management, system pressure
monitoring and management. We have applied the approach described in Section 2 to
distribute the control over the nodes of a prototype decentralized potable water control
system. The nodes of the decentralized system are connected by means of a CAN bus.
The prototype decentralized potable water control system shown in “Figure 1” has the
following intelligent nodes.

1. Two level sensors

2. One panel indicator

3. One fill/drain valve

4. One drain valve

105

SIVANTHI, KILLAT, ANGRISHI

5. One depress valve

6. One pressure sensor

7. One air compressor

M

M M

Potable
Water Tank

S
I

M

Potable
Water Tank

S
I

M

100
75
50
25

Panel
Indicator

Floor

S
I

M

S
I
M

S
I

M

S
I

M

S
I

M

Fill /Drain
Overflow

Valve

User Switch

Drain Valve

PWSP Door
Open

CAN Bus

Pressure
Sensor

115VAC
Compressor

Level
Sensor

Level
Sensor

A/C Potable water system CAN bus

28 VDC bus bar

MCheck
Valve

Float
valve

S
I

M
Depress

Valve

Figure 1: The prototype decentralized potable water control system

Each node has a maximum allowed utilization of 50% and the maximum allowed uti-
lization of the bus is 60%. The system performs various control tasks, which can be
grouped under five different operation modes. The tasks executed in each operation mode
are identified, this includes the redundant tasks for fault-tolerance. The tasks and their
communications are then represented in a task graph. The task graph for one such opera-
tion mode is shown in “Figure 2”.

The task graph consists of five tasks with a hyperperiod of 60 ms. There are three in-
stances of Task1, Task2, Task 4 and Task 5 in one hyperperiod and Task 3 has a single
instance. M2 and M3 are redundant modules for module M1. M5 and M6 are redundant
modules for M4. M11 is a redundant module for module M9 and M10. M13 is a redun-
dant module for M12. M15 is a redundant module for M14. The modules M7 and M8,
M9, M10, M16, M17 perform functions that are local to Node 3, Node 1, Node 2, Node 4
and Node 5 respectively. These modules must be allocated to their corresponding nodes.
The global schedule for the task graph derived using the ILP is shown in “Figure 3”. The
global schedule defines the allocation and scheduling plan for all the task modules and
their communications in the nodes and the bus respectively.

The ILP derives a TDMA based schedule for the communications in the bus. The time-
triggered communication in CAN is achieved by implementing a time-triggered layer on
the top of CAN. The node with the highest priority, also called the “monitor”, sends a
clock synchronization message to synchronize all the application clock of the nodes. If
this node fails, the node with the next highest priority will send the clock synchronization
message. The operation mode determination is performed by the redundant modules,
which are executed in three different nodes. The nodes which execute the operation mode

106

A FORMAL APPROACH FOR DISTRIBUTION OF REAL-TIME CONTROL

Task T1 Task T2 Task T3 Task T4 Task T5

M1
e1 = 1

ms

 C1
 C7

 C4
 C10 C9

C12

C4

C4

C16

 C11

 C2

 C3

C5
C6

 C13

 C12

 C13

M15
e15 = 1

ms

M17
e17 = 1

ms

M16
e16 = 1

ms

M14
e14 = 1

ms

M13
e13 = 10

ms

M12
e12 = 10

ms

M11
e11 = 5

ms

M10
e10 = 10

ms

M9
e9 = 10

ms

M8
e8 = 1

ms

M7
e7 = 1

ms

M5
e5= 1

ms

M6
e6 = 1

ms

M4
e4 = 1

ms

M3
e3 = 1

ms

M2
e2 = 1

ms

M18
e18 = 1

ms

 C18
 C24

C21

 C19

C20

C22
C23

M25
e25 = 1

ms

M24
e24 = 1

ms

M22
e22 = 1

ms

M23
e23 = 1

ms

M21
e21 = 1

ms

M20
e20 = 1

ms

M19
e19 = 1

ms

M28
e28 = 1

ms

 C28
 C24

C31

 C29

C30

C32
C33

M35
e35 = 1

ms

M34
e34 = 1

ms

M32
e32 = 1

ms

M33
e33 = 1

ms

M31
e31 = 1

ms

M30
e30 = 1

ms

M29
e29 = 1

ms

C26

M27
e27 = 1

ms

M26
e26 = 1

ms

 C36

M37
e37 = 1

ms

M36
e36 = 1

ms

 C21

 C21

 C31

 C31

P1=P2=P4=P5
=20 ms

P3 = 60 ms

P1=P2=P4=P5
=20 ms

P1=P2=P4=P5
=20 ms

 C5 C6

 C5

 C6

 C5

 C6

 C22 C23

 C33 C32

 C22

 C23

 C22

 C23

 C32
 C33

 C32

 C33

Figure 2: Task graph

determination modules, will send the operation mode change messages. The mode change
latency of this system is greater than the hyperperiods of all operation modes hence, the
nodes follow the global schedule for the new mode in the subsequent hyperperiod.

When building a decentralized control system, one need to ensure that all the system
run-time control functionalities are fulfilled before the system is implemented. This can
be achieved using a system simulation setup. We have built such a simulation setup for
the prototype decentralized potable water system using Vector CANoe [6]. Vector CANoe
is a powerful tool, which supports the entire development process for networked systems
from planning to implementation. It offers special functions for all phases of a product
cycle, (e.g.) model creation, simulation, functional testing, diagnostics, and analysis.

The global schedule derived using the ILP is used to distribute all system control tasks
over the nodes of the prototype decentralized potable water system. This helps to refine
the design to the level of the network nodes, which involves specifying the behavior of the

107

SIVANTHI, KILLAT, ANGRISHI

Node 5

Node 1

Node 2

Node 3

 Node 4

Time (milliseconds)

10

C
1

C
2

C
3

C
4

C
5

C
6

C
16C

7

C
9

C
10

C
11

C
13

C
18

C
19

C
20

C
21

C
22

C
23

C
26

C
24

C
28

C
29

C
30

C
31

C
32

C
33

C
36

C
34

20 30 40 50 60

Bus

C
12

M
1

M
9

M
8

M
7

M
6

M
5

M
4

M
3

M
2

M
1

7
M

1
6

M
1

5

M
1

4

M
1

3

M
1

1

M
10

 M
18

M
2

5

M
2

4

M
2

3
M

2
2

M
2

1

M
2

0
 M

19

M
2

7
M

2
6

M
2

8

M
3

5

M
3

4

M
3

3
M

3
2

M
3

1

M
3

0
M

29

M
3

7
M

3
6

M
12

Figure 3: Global schedule

network nodes with regard to input and output variables and the messages to be received
and transmitted. The physical process to be controlled is modeled using the environment
input and output variables of Vector CANoe. The behavior of each network node is spec-
ified using the functions available in a C-like programming language called CAPL [6].
The test cases of a centralized potable water system derived from the requirement speci-
fication, is used to verify the compliance of the decentralized potable water system using
simulation.

4 Conclusion

In this paper, we discussed a formal approach for distributing the control of a RTCS to
a set of nodes. The control software is abstracted using task graphs and the distribution
is carried out using an ILP. The complexity of the distribution is handled by finding an

108

A FORMAL APPROACH FOR DISTRIBUTION OF REAL-TIME CONTROL

allocation and scheduling plan for each operation mode of the system. The derived plan
confirms to the task and resource constraints. The approach is applied to decentralize a
potable water control system in an aircraft. A prototype of the decentralized potable water
control system is built in Vector CANoe and the system control functionalities are verified
by simulation.

References
[1] H. Barada, S.M. Sait, and N. Baig. Task matching and scheduling in heterogeneous systems using

simulated evolution. 10th IEEE Heterogeneous Computing Workshop (HCW 2001), April 2001.

[2] C. Hsueh and K. Lin. Scheduling real-time systems with end-to-end timing constraints using the
distributed pinwheel model. IEEE Trans. Comput., January 2001.

[3] M. Lin, L. Karlsson, and L.T. Yang. Heuristic techniques: Scheduling partially ordered tasks in a
multi-processor environment with tabu search and genetic algorithms. ICPADS, July 2000.

[4] S. Faucou, A.M. Deplanche, and J.P. Beauvais. Heuristic techniques for allocating and scheduling
communicating periodic tasks in distributed real-time systems. IEEE WFCS, September 2000.

[5] T. Sivanthi and U. Killat. Global scheduling of periodic tasks in a decentralized real-time control
system. IEEE WFCS, September 2004.

[6] CAN open environment, Overview and Project Description. Vector Informatik GmbH, Germany, 1996.

109

