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Abstract — The paper addresses the problem of power consumption of sensor

nodes in a wireless network. An integrated low-power analog/digital converter

(ADC) is presented that is particularly suited for wireless sensor applications.

The converter makes use of information theoretic redundancy in the input signal

for reducing the conversion workload and performing data compression on-the-

fly during conversion (entropy-coding A/D converter). Thus, energy is saved both

in signal conversion and transmission. Experimental results from a prototype

chip are presented.

The converter is especially suitable for sensor networks that maintain a global

data model. This is further illustrated on an exemplary scenario of distributed

wave detection. It is shown that sensor signal detection and acquisition in this

type of applications can be carried out very efficiently with entropy-coding con-

verters used in the sensor nodes.

1 Introduction

Since the sensor nodes in future wireless sensor networks are expected to work

autonomously with little energy supply for a long time, the problem of low power

consumption of the nodes is an important issue. Thus it is advisable to include possi-

bilities on all design levels to reduce the power consumption in the system design pro-

cess. While the power consumption of the digital parts of the sensor nodes benefit

from the advances of semiconductor technology,  the same statement cannot be made

for the analog and radio parts [1]. This paper addresses in particular the reduction of

power consumption of the analog-to-digital conversion by pointing out the particular

suitability for wireless sensor networks of our recent A/D converter architecture.

We have developed a novel circuit architecture for integrated analog/digital con-

verters (ADCs) that allows to exploit the information-theoretic redundancy of the in-

put signal for increasing the efficiency of operation and reducing the power consump-

tion of the converter [2]. During analog/digital conversion the ADC performs data

compression at the same time, without extra cost. This fact reduces the necessary

bandwidth for radio transmission of the sensor values, which in turn diminishes the

workload of the digital post-processing and the radio transmitter as well. Details on
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the basic concepts of the ADC and experimental results from a prototype chip imple-

mentation [2] are reported in Section 2.

Section 3 is intended to illustrate the benefit that can be obtained in a wireless sen-

sor network from this type of ADC. For this purpose, we consider a scenario where a

network of sensors is distributed over some area of interest. The sensors measure a

certain physical quantity, for instance pressure. We expect the occasional occurrence

of waves of this quantity. The goal for the network is to monitor the area and to give

alarm in case of the occurrence of a wave, and in this case to observe the wave with

high precision. It is discussed that employing a global model of the sensor field, a

considerable amount of energy can be saved if entropy-coding ADCs are utilized in

the sensor nodes. Conclusions are drawn in the final Section 4.

2 Entropy-coding Analog/Digital Converter

In wireless sensor networks it is mandatory that the analog/digital converters in the

sensor nodes have a power consumption as small as possible. In addition, it is benefi-

cial for the battery lifetime of the node if we compress the sensor data prior to trans-

mission over the network. Usually, data compression is done using one or another

form of entropy-coding. However, if it is possible to compress the sensor data after

digitization at all, this means that the ADC has created unnecessarily many bits and

consumed unnecessarily much energy. Thus, an important increase in efficiency can

be obtained if we combine the A/D-conversion and the entropy-coding  into a single

process, because  the operational effort of the ADC then can be adapted to the true

information rate of the sensor signal. This idea has been carried out into the develop-

ment of an integrated entropy-coding analog/digital converter (ECOC) [2].

According to information theory, the information flow is the smaller the larger the

pre-knowledge of the receiver about the information source is. The measure for the

uncertainty of the incoming signal is the entropy [3]. If the receiver knows much

about the incoming signal in advance, the entropy of the signal is low; if he is fully

ignorant, the signal has a high entropy [3]. The goal of our ADC architecture is to use

this pre-knowledge in the process of A/D conversion for saving energy  as well as for

data compression.

The pre-knowledge on the input signal is made available to the entropy-coding A/D

converter ECOC by way of a probability distribution (PDF) and a prediction of the

next input sample. The ECOC uses this information in order to determine the code for

the next input sample efficiently [2]. The successive-approximation algorithm used

has many similarities to Huffman coding, which is well-known from digital data com-

pression [4]. In each step of the algorithm, the sampled input is compared to an opti-

mal threshold that is determined on the basis of a Huffman code tree. Input values

with a high probability only need a small number of comparisons, while more com-

parisons are necessary for input values with a low probability. On the average, the

number of comparisons ideally becomes equal to the entropy. Since power consump-

tion is mainly proportional to the number of comparisons, energy is saved by this al-

gorithm because the converter returns to power-down earlier in the fixed sampling

interval.
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The block schematic diagram of the ECOC (Figure 1) shows the components of the

system architecture [2]. It consists of the blocks Comparator, digital/analog converter

(DAC), sample&hold circuit (S&H) and Huffman control, which executes the quanti-

zation algorithm. The Expect input allows the control unit to take into account an es-

timation of the next input sample, which is e.g. provided by some prediction mecha-

nism (an example is discussed in the next section). The parallel output Data delivers

the (full binary) code corresponding to the analog input value. The single-bit serial

output SData is connected to the comparator and yields the compressed Huffman

code. It can be directly used to transmit the digitized input signal over band-limited

channels like a radio link in a wireless sensor network.

Because of restrictions of chip size and manufacturing cost, the ECOC currently ac-

cepts only three-region piecewise-constant probability distribution functions as shown

in Figure 2. The width of the high-probability region as well as its center can be con-

figured externally. The implemented conversion algorithm consists of two phases. In

the first phase, the high-probability region is processed with the conventional binary

search strategy. Only in case that the input value is found to lie outside this region

during the first phase, the full input range is searched in a second phase. For instance,

if the entropy of the input is 6 bit, while 12 bits are needed for full resolution of the

input range, a 12-bit ECOC can be configured to 6 bit for the high-probability region.

Then, in most cases the input value is converted with only 6 comparison operations,

while in the unfavorable case 18 (6+12) comparisons are needed. On average, how-

ever, the comparison effort is e.g. only 6.6 bits. By this simplification, there is no need
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Figure 1: Block diagram of the entropy-coding A/D converter

Figure 2: Piece-wise constant approximation of the probability distribution
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to store a large Huffman code tree [3],[4], which would be necessary for arbitrary

probability distributions.

We realized a prototype implementation of the ADC with 12 bit resolution in a 0.6

�m CMOS technology [2]. A photograph of the realized chip is shown in Figure 3.

The core area containing the ADC components has a size of 3 mm
2
, the size of the

whole chip is 10 mm
2
.

Performance results measured on the prototype are shown in Table 1 [2]. A maxi-

mum sampling rate of 200 kS/s has been achieved, while the signal-to-noise-and-

distortion-ratio (SINAD) was 66 dB. In the conventional binary-coding mode, power

consumption of 1.4 mW was obtained. For an experimental investigation of the en-

tropy-coding mode, we computed zero-mean Gaussian white noise waveforms of well

defined entropies and loaded these into an Agilent 33120A Arbitrary Waveform Gen-

erator. This instrument generated a corresponding analog noise signal, which was ap-

plied to the input of the ECOC. The compression factor as well as the power con-

Figure 3: ECOC chip photograph
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1 - Capacitor-Array

2 - Resistor-Array

3 - Comparator

4 - R-Switch-Control

5 - C-Switch-Control

6 - Huffman Control

7 - Sample-Clock

Generator

CMOS Technology 0.6 µm

Resolution 12 bit

Max. Sampling Rate 200 kS/s

SINAD 66 dB

Max. Compression (2 bit input) 4x

Power (binary coding) 1.4 mW

Power (entropy-coding, 3 bit input) 0.8 mW

Table 1: ECOC performance (all values for 200 kS/s sampling rate)

73



ADAPTIVE LOW-POWER A/D CONVERTERS

sumption was measured. We found that the integrated data compression comes close

to the Shannon limit down to one bit distance.  The power consumption is quite low

with 800 µW in the entropy-coding low-power mode at full conversion speed.

The adaptability, the low power consumption, and the integrated data compression

make the converter very well suited for wireless sensor networks. A sketched view of

a possible wireless sensor node is shown in Figure 4. The node consists of 4 main

components, i.e. the sensor, an integrated circuit (IC) including the sensor interface

circuitry (amplifier, filter etc.) and the ADC, a microprocessor, and a radio unit. While

our current prototype-IC contains only the ECOC (see Fig. 3), it is useful for the pur-

poses of miniaturization and power-saving to integrate the sensor interface and the

ECOC together on a single application-specific circuit (Interface-IC in Fig. 4). De-

pending on the application, it might even make sense to integrate the microprocessor

on the IC as well.  The usefulness of the ECOC on wireless sensor nodes like this will

be further illustrated by investigating a hypothetical application scenario in the next

section.

3 Application Scenario: Distributed Wave Detection

The properties of the entropy-coding A/D converter can be utilized favorably in such

wireless sensor network applications where the network maintains a global model of

the sensor data, as described e.g. in [5]. In that paper, the authors report on their de-

velopment of a distributed regression algorithm, which is executed on the sensor

nodes to fit a global function to local measurements. Details on an evaluation of the

algorithm based on data from a sensor network at the University of California, Ber-

keley are also given. The authors point out that using a global model of the sensor

data, the communication workload can be drastically reduced, since only the model

parameters instead of all the sensor values need to be transmitted to a central station.

Raw sensor data have to be exchanged only locally between neighboring nodes during

the execution of the distributed regression.

In the context of the present paper, a particularly important aspect of the concept de-

scribed in [5] is that after the initial setup of the global model, each node can predict

the behavior of the sensor field in its local area [5]. Thus, if entropy-coding ADCs are

used in the sensor nodes, not only the communication workload is reduced but also the

Sensor

Interface-
IC

Processor RF

Figure 4: Sketch of wireless sensor node
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cost of A/D conversion. If the prediction from the global model is supplied to the Ex-

pect input of the ECOC (cf. Figure 1), the converter is enabled to acquire the subse-

quent local sensor values very efficiently.

Other advantages of the global sensor data model mentioned in [5] are supported by

the ECOC as well. As a byproduct of its operation, the ECOC indicates automatically

if the converted value is close to the prediction or not, because a dedicated output bit

signals whether the value was found inside the high-probability region or not. This

feature facilitates the Adaptive Sampling and the Outlier Detection mentioned in [5],

where Adaptive Sampling refers to suppressing messaging of values that are near to

the prediction. Outliers can be identified by the ECOC when the above-mentioned

output bit indicates that the value was found outside the high-probability region, i.e.

was unexpected. This information can be used to detect sensor failure or alarm condi-

tions [5].

Let us elaborate on the concept of maintaining a global model of the sensor field a

bit further by considering the following hypothetical application scenario (see Figure

5). The task is to monitor some area (or volume) of interest for the occurrence of a

certain type of waves of the sensed quantity (e.g. pressure), in which case an alarm

has to be triggered and the propagation of the waves has to be followed up precisely.

It is assumed that in the normal state some noise of low amplitude is present in the

pressure field while the waves of interest have higher amplitude.

For this purpose, a wireless sensor network is laid out in the area. Each sensor node

contains a pressure sensor, sensor interface electronics, an entropy-coding A/D con-

verter, a microprocessor, and a radio unit (cf. Fig. 4).

A distributed wave detection algorithm is implemented on the network, which might

operate in a way as described in the following. Normally, all sensor nodes are put into

wave front area of interest

sensor node

Figure 5: Distributed wave detector
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1-bit resolution. This means that the value from the pressure sensor is compared by

the ECOC with a threshold only, which is defined above a suitably selected maximum

expected noise amplitude. The nodes are "armed" (state green). Since they have to do

only a single comparison per sample, this operation can be carried out with very low

power consumption. Also, no radio transmission is necessary in this state.

If the sensor value is found to be above the threshold, it has to be detected if the

wave is present or if the noise has just an unexpectedly high value. Remember that an

alarm has to be triggered only if the wave is detected; higher values of noise should go

unnoticed. The wave detection is performed by several sensors in the network in co-

operation. Corresponding decentralized detection algorithms have been discussed for

instance in [6], [7], and [8]. These papers describe how a nonlocal detection algorithm

can be distributed and carried out by several nodes of a sensor network cooperatively.

In the scenario considered above, after finding the sensor value greater than the

threshold, the sensor node digitizes the value with higher precision and sends the re-

sult to a few neighboring nodes. By this, the local network neighborhood goes into a

state of alertness (state orange), meaning that suspiciously high amplitudes have been

found in the local region, and the actual distributed detection has to be carried out.

The sensors in state orange now themselves convert their sensor readings with higher

precision and send their values to their respective neighbors. (It might be advanta-

geous to keep the precision and the sampling rate in state orange at a low level in or-

der to not consume unnecessarily much power. The details depend on the actual im-

plementation of the detection algorithm.)

Now that all nodes in the local region have knowledge of the values of their neigh-

bors, they apply the decentralized detection algorithm to these values. This could be a

Bayes detector testing the values against the hypothesis that a wave is present. During

this test, the spatio-temporal correlations of a wave, which are not present in noise, are

taken advantage of. If the test result is unfavorable (i.e. no wave present), this out-

come is communicated to the neighbors, and if all nodes agree with this, the network

goes back into state green. If not all nodes agree, the nodes stay in state orange, and

the process is repeated.

If the test outcome is favorable (i.e. a wave has been found), the node goes into state

red, converting the analog sensor value now with full precision and possibly higher

sampling rate in order to observe the wave closely. It also estimates some parameters

of interest of the wave (e.g. amplitude, frequency, wave length, direction of propaga-

tion, or location of the wavefront). All this information is communicated to the orange

neighbors, which puts them into state red, too. The other sensors also estimate the

wave parameters based on their local information and exchange the results with the

neighbors. A distributed estimation of the wave parameters can be carried out now,

using e.g. an algorithm similar to the one described in [5], or using a Bayes-based pa-

rameter estimation that integrates several sensor readings into a common model (mul-

tisensor data fusion) as discussed in [9].

The local Bayes estimators integrate all this information into estimations with in-

creasingly higher confidence. As soon as a sufficient number of sensors in the orange

neighborhood agree on the presence of the wave and its parameters, the red state is

flushed over the whole network, and an alarm to the user of the network is triggered.

From now on, all sensor nodes are informed on the parameters of the wave, and they

can predict the coming wave with good confidence (it is assumed here of course that

the speed of information transfer in the network is higher than the propagation veloc-
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ity of the wave). The sensor nodes adapt their entropy-coding ADCs according to the

predictions and use the mechanism described in Section 2 for monitoring the wave

with precision but also with low power. In applications where the user is interested in

all the local sensor readings during an alarm, the compressed output of the ECOCs can

be transmitted to the central station very efficiently. Otherwise, only the parameters of

the wave model have to be sent.

During the alarm, the wave parameters are continuously updated. If the wave pa-

rameters indicate disappearance of the wave, the sensor network returns back to state

green.

The advantages of the outlined distributed wave detection compared to local or cen-

tral detection are

− sensor values are transmitted only in the neighborhood,

− computation takes place mostly local,

− distributed detection is based on spatio-temporal correlations of the wave and thus

more reliable than local detection (less false alarms),

− only global information as the wave parameters are broadcast to the network,

− the disseminated information on the detected wave is used to monitor the wave ef-

ficiently.

The entropy-coding A/D converter described in Section 2 is particularly suited to

this type of scenario. In state green, the ECOCs might be put into power-down mode

most of the time. Their configurable resolution allows to adapt the number of proc-

essed bits to the current state of the node, reserving high resolution and thus high

power only to the case of an alarm. As soon as the wave parameters are determined

and broadcast, the spatio-temporal waveform at each moment and at all node positions

can be predicted very well. The high-probability regions of the ECOCs then can be

adapted accordingly, thereby saving power even in the case of an alarm. Higher power

is spent only for capturing additional information on the wave insofar as the actual

wave deviates from the predictions. Raw sensor readings are delivered by the ECOCs

also in compressed format, which keeps the cost small of transmitting the values to the

neighbors or to the user.

While it is difficult to determine the efficiency without the actual development and

investigation of the system for a specific application, a rough indication on the en-

ergy-saving potential for this scenario can be given as follows. For simplicity, let us

assume a constant sampling rate of 20 kS/s, a basic entropy-independent power con-

sumption of 15 µW, and an entropy-dependent power consumption of  8 µW/bit.

These numbers can be predicted for the next ECOC generation from the previous ex-

periments. A conventional continuous 12 bit data acquisition would then consume 111

µW per ADC. If we further assume that the sensor nodes work in full 12 bit for 0.1%

of the time (in state orange and in the beginning of state red), in 3 bit for 1% of the

time (state red), and in 1-bit mode for the rest of the time (state green), the ECOC can

be estimated to consume 23 µW on the average, which amounts to an energy saving of

79%. This factor includes only the power reduction of the A/D conversion itself; fur-

ther savings are possible by communicating only the global or the compressed data

instead of the full sensor readings.
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4 Conclusion

An entropy-coding analog/digital converter has been presented that combines A/D

conversion and data compression in a single process. The converter utilizes predic-

tions or other prior knowledge of the input signal for achieving low-power operation.

Measurements on a prototype CMOS chip have been reported.

The converter can be tailored to specific applications and integrated together with

sensor interface electronics and a microprocessor on a single chip for very small-size

and low-power sensor nodes. It was shown that the concept of entropy-coding A/D

conversion can be utilized most advantageously on sensor networks that maintain a

global model of the sensor data field. This was illustrated further discussing a scenario

of distributed wave detection.

Currently we are working on the next ECOC generation. This version will have ex-

ternally configurable resolution between 1 and 12 bits. Further, the so far relatively

high standby power will be reduced, which will bring forth a power reduction factor

close to the data compression factor. The new version will be very flexible and can be

adapted in terms of resolution, conversion rate and input entropy to various applica-

tions. Particularly in the entropy-coding mode it will consume extremely small power.

All configurations, including a power-down mode, can be changed online during the

operation. This feature allows to adaptively react to changes of the situation and to put

the converter in each case into the optimum configuration.
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