
Large Scale Testing of Pervasive Computing Sys-
tems Using Multi-Agent Simulation

Nanjangud C Narendra1

1IBM Software Labs India
Airport Road, Bangalore, India
narendra@in.ibm.com

Abstract — The rapid growth of handheld computing devices such as mobile
phones, PDAs or palmtops is paving the way for the emergence of pervasive
computing systems. Just as in the case of traditional computing systems, perva-
sive computing systems need to be tested in the large before they can be deployed
in the field. As opposed to traditional computing systems, however, large-scale
testing of pervasive computing systems requires the presence of dozens (perhaps
hundreds) of physical devices, arranged together in a network, executing a vari-
ety of complex scenarios. In order to reduce the cost of such testing, it would be
better to simulate the operation of a pervasive computing system using well-
known techniques from multi-agent simulation, by representing each (hardware
or software) component of the system as a software agent. In this paper we de-
scribe our ongoing work, where we extend our earlier work on multi-agent simu-
lation, for pervasive computing systems. Since adaptation in pervasive computing
systems is expected to be common, we also show that our simulation technique
can model adaptation.

1 Introduction

Pervasive computing [9] is an era of computing with two special distinguishing char-
acteristics: (a) users will no longer be tied to the desktop paradigm and (b) users will
become increasingly mobile. This will result in usage patterns that are quite different
from what we have known traditionally as workflow or office work. The new usage
patterns will be increasingly defined by large numbers of low-power devices (mobile
phones, PDAs, palmtops) co-existing with desktop computing systems; disconnected
operation, and rapid and ad-hoc changes in usage patterns.

In order for pervasive computing to become a reality, large-scale testing of perva-
sive computing systems under varied and complex scenarios becomes necessary. Such
testing would help to “scale up” the small-scale laboratory testing currently underway
in most R&D organizations conducting pervasive computing research.

For example, if we were to consider a 200-bed hospital staffed by 40 nurses, 40 doc-
tors and specialists and 10-15 administration staff, one could conceivably imagine an
environment of about 100 pervasive computing devices such as mobile phones, PDAs,
palmtops, etc., co-existing with the desktops comprising the hospital’s own computer
system. This, of course, does not take into account the complexity of the tasks exe-

27



NANJANGUD C NARENDRA

cuted by the different users, such as medical tests, surgeries, emergency procedures,
etc. It would be quite difficult to test and verify the performance and other characteris-
tics of such a large-scale system without either involving a real hospital as a “guinea
pig” for testing, or recreating a similar laboratory environment by purchasing several
pervasive devices and enlisting the assistance of dozens of volunteers. Hence it is es-
sential to investigate techniques such as multi-agent simulation [12], since the perva-
sive computing system can be modeled as a collection of cooperating agents. More-
over, even if a “guinea pig” could be found, simulation is needed in order to at least
obtain an initial assessment of the efficacy of the system before deploying it on the
“guinea pig”.

Analytical models for such systems either cannot be developed with any degree of
uncertainty, or would probably become unsolvable, given the complexity of the sys-
tem. The objective of multi-agent simulation would be to develop “rules of thumb”
that would assist system designers in developing large scale pervasive computing sys-
tems. These “rules of thumb” would evolve based on the results of simulation.

This paper is organized as follows. In the next Section, we discuss the requirements
for simulating pervasive computing systems. In Section 3, we describe our model of
the architecture of the system that we wish to simulate. Section 4 describes our multi-
agent simulation architecture. In Section 5 we describe our simulation technique in
detail. We present some related work relevant for our paper in Section 6, while the
paper concludes in Section 7 with suggestions for future work.

In what follows, for the sake of simplicity, we also refer to the “pervasive comput-
ing system” as “the system”.

2 Requirements for Simulating Pervasive Computing Systems

Simulation of a pervasive computing system raises several challenges. In particular, in
addition to the behavior of software artifacts such as desktop systems, and software
running on handheld devices, the actual characteristics
(behavior/performance/capacities) of the devices themselves need to be modeled.

In this regard, the notion of contexts becomes important. Context is any information
that characterizes the interaction between a component of the system (such as a user
or a device) and its environment [9]. The behavior of an entity is therefore determined
by the context that the entity operates in. For example, a doctor carrying a PDA can
receive picture messages containing some images, whereas if he were to carry only a
mobile phone, he may need to be only sent a text message stating where he could
access the images. Similarly, if the doctor is in the operating room with a patient and
cannot read detailed messages regarding his/her other patients, the system should only
send him/her an informational message, specifying the location from where he/she can
download the information later.

Since pervasive computing systems are meant to be used by multiple users
executing - jointly or otherwise - several activities, it is essential that their activities be
suitably modeled and simulated – hence a need for workflow-based modeling of user
activities as in [1,4]. Moreover, since usage patterns of users’ activities are usually ad-
hoc in pervasive computing systems, this leads to continuous workflow adaptation,
which should also be modeled. In pervasive computing systems, workflow adaptation
is of two types [1,5]:

28



LARGE-SCALE TESTING OF PERVASIVE COMPUTING SYSTEMS USING MULTI-
AGENT SIMULATION

• Functional – changes in users’ requirements, leading to changes in their usage
patterns

• Architectural – changes in availability of certain resources at certain locations and
times, leading to changes in usage patterns themselves

To summarize, an effective simulation of a pervasive computing system should be:
workflow-based, in order to capture and simulate users’ activities, be able to model
workflow adaptation due to constantly changing usage patterns, and context-aware in
order to account for the context in which the users and resources are situated.

In addition, as already stressed in Section 1, the simulation environment should be
able to model the system components as agents cooperating with each other to execute
the defined workflows. In order to model workflow adaptation, the simulation
environment would need to start, stop, suspend or resume the operations of one or
more of these cooperating agents. For analysis purposes, it would need to possess a
mechanism for collecting and manipulating execution data, so that appropriate
conclusions about the performance and efficacy of the system can be drawn. This
means that the simulation environment should able to model and control the lifecycle
of each agent being simulated. In other words, the simulation environment must be
lifecycle-based.

Therefore we see that two types of architectures need to be modeled:
• The system architecture to be simulated (which is actually the pervasive

middleware), has to be defined so that the various components and their
interconnections can be defined and modeled. This architecture should be
workflow-based, adaptation-aware and context-aware. We will be using our 3-tier
system architecture for pervasive computing systems, earlier introduced in [1],
since it meets these requirements. This architecture will be described in Section 3.

• The simulation architecture itself, which is used to build the simulation
environment that will simulate the components and behavior of the system
architecture. This should be a multi-agent and lifecycle-based environment. For
this reason, we extend from our lifecycle-based multi-agent simulation system
described in [2], for simulating pervasive computing systems.

3 System Architecture

In order to simulate the system, we need a conceptual description of what the system
will “look like”. For this we first need to develop a conceptual model of the different
entities in the system, and this is depicted in Figure 1 (also see [1]).

29



NANJANGUD C NARENDRA

Figure 1: Conceptual Model – mapping of workflow tasks to services, and dynamic
binding of services to resources

As per the conceptual model of Figure 1, a workflow task is mapped into a service.
The service is provided by a role. The role is capable of being performed by one or
more human resources. In addition, the service would also require certain physical
resources for its implementation. Mapping of the task to the service, and of the service
to the appropriate role, can be specified at design-time as per users’ functional
requirements. However, mapping of the service to the actual human and physical
resources is done at run-time, in keeping with service orientation. This dynamic
binding is therefore dependent on the context in which the binding occurs, as already
explained in Section 2.

Our system architecture (derived from [1]) will therefore model contexts at three
different levels, in keeping with the conceptual model of Figure 1. The topmost level
is the E-context (standing for Environmental context) level, which will represent the
contextual information of the overall environment, such as number of users, number
of physical resources, users’ functional and non-functional requirements, overall
workflow model consisting of sequence of tasks. The next level is the S-context
(Service context), which models the contextual information of each Service, such as
task that the service is mapped onto, human and physical resources needed for service
execution, succeeding and preceding workflow tasks of the task. The last level is the
R-context (Resource context), which models the detailed resource information such as
resource capacity (in the case of physical resources such as pervasive devices), roles
performed by human resources.

The system architecture is pictorially depicted in Figure 2, and consists of the
following layers:
• The topmost layer is the Environment layer, which models the overall environment

of the system, including users’ functional and non-functional requirements, and
overall workflows meeting those requirements, which are then translated into the

30



LARGE-SCALE TESTING OF PERVASIVE COMPUTING SYSTEMS USING MULTI-
AGENT SIMULATION

services (workflow tasks) whose execution will meet the requirements. It consists
of the following modules:
� The Requirements Management module stores and manages the users’ func-

tional and non-functional requirements
� The E-Context Management module is responsible for setting and maintaining

the E-context information; it also interacts with the S-Context Management
module at the Service layer for obtaining and aggregating contextual informa-
tion from the Service layer

� The Functional Adaptation module implements functional adaptation (see Sec-
tion 2) as per changes in users’ functional requirements

• The middle layer is the Service layer, which models the tasks executed by the us-
ers in the system in the form of the services derived from the users’ requirements;
these services which are bound to the physical and human resources needed for
service execution. It consists of the following modules:
� The S-Context Management module manages and maintains the S-context in-

formation; it also interacts with the R-Context Management module at the Re-
source layer, for obtaining and aggregating contextual information from the
Resource layer. The S-Context Management module also sends its own contex-
tual information up to the E-Context Management module at the Environment
layer.

� The Service Module represents the invocation and execution of the services
represented as activities in the workflow model

� The Role Management module is responsible for managing the assignment of
roles to the activities that represent the services

• The bottom layer is the Resource layer, which models the behavior of the physical
and human resources in the system to which the services are bound. It consists of
the following modules:
� The R-Context Management module manages the R-context information, and

relays the information up to the S-Context Management module
� The Service Binding module is responsible for the dynamic binding of services

to physical and human resources, as per the conceptual model depicted in Fig-
ure 1.

� The Architectural Adaptation module implements adaptation caused by
changes in users’ non-functional requirements, such as resource availability
changes.

Our system would operate as follows. Based on users’ functional requirements, the
behavior of the system would be modeled as a set of workflows. Each task in a work-
flow is mapped onto a service provided by a role in the system. In addition, the ser-
vice would also require certain physical resources (such as pervasive devices) for its
implementation. Mapping of the task to the service, and of the service to the appropri-
ate role, can be specified at design-time as per users’ functional requirements. How-
ever, mapping of the service to the actual human and physical resources is done at
run-time, as per users’ non-functional requirements.

31



NANJANGUD C NARENDRA

Figure 2: System Architecture

4 System Architecture

In order to model the simulation architecture, we are leveraging from our earlier work
on multi-agent simulation [2], as already explained in Section 2. Basically, each com-
ponent in the system is modeled as a software agent possessing some qualities essen-
tial to agents: autonomous (can function without active user intervention), proactive
(can adjust its behavior according to external stimuli), reactive (capable of reacting to
external stimuli), and social (can interact with other agents). Hence each Agent can
model one of the components of our system – a user, a desktop system, a pervasive
device, a component of the middleware as depicted in Figure 2 [1], etc. The local be-
havior of each agent under particular inputs is modeled by Event-Condition-Action
(ECA) rules for each input [6], where each input to an agent is modeled as an event
triggering a response. The overall system behavior is therefore evolved as a combina-
tion of these local behaviors. The ECA rules are flexible enough to even model the
workflow tasks executed by users as described in Section 2. The simulation
architecture is depicted in Figure 3.

�

Users

Service Module Role Management
Module

S-Context
Management

Module

R-Context
Management

Module

Service
Binding
Module

Workflow
Repository

Functional
Adaptation Module

Architectural
Adaptation Module

Service-Resource Interface Manager

Environment-Service Interface Manager

Requirements
Management

Module

E-Context
Management

Module

Resource
Layer

Service
Layer

Environment
Layer

32



LARGE-SCALE TESTING OF PERVASIVE COMPUTING SYSTEMS USING MULTI-
AGENT SIMULATION

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3: Simulation Architecture – Simulation Engine Interacting With An Agent

In Figure 3, the Simulation Engine is a software program that maintains and exe-
cutes the workflow models consisting of sequences of task executions modeled by the
ECA rules. This is done by triggering the execution of each Agent (which represents a
component in our system) as per the workflow model; the Agent would respond to the
trigger as per its ECA rules. The Simulation Engine consists of two components: the
Interface module is responsible for triggering each Agent for task execution; and the
Central Database is responsible for maintaining the workflow models, and the simula-
tion results, which can be used later for visualization or analysis (as described in more
detail in Table 1 in Section 5.1 below).

Each Agent in the system is modeled as shown in Figure 3, with the following mod-
ules: the Workflow modules is responsible for interacting with the Interface module of
the Simulation Engine, from where it receives triggers and to which it responds to the
Simulation Engine as per its predefined ECA rules; the Agent Integration module
helps the Agent in interacting with the other Agents in the system if needed, as per its
ECA rules (this is needed for hierarchical workflow modeling, described in more de-
tail in Section 5.1 below). Hence in keeping with the agent’s autonomous status, the
Simulation Engine is responsible for the overall workflow execution, while each agent
is responsible for its respective task execution.

The simulation proceeds as follows. The overall workflow execution model is de-
fined by the Simulation Engine and consists of a sequence of workflow tasks, with
each task to be executed by an agent. As per the workflow model, the Simulation En-
gine invokes the agent by sending it a trigger message, which is the Event part of the
agent’s ECA rule. The result of the task execution, which is the Action part of the
ECA rule, is sent back to the Simulation Engine. In case of hierarchical workflow
modeling, the agent may in turn trigger other agents via the Agent Integration module,
and obtain results from their respective Action parts. Based on the result of the
Agent’s task execution and the workflow model, the Simulation Engine will invoke
the next agent, and so on, until the workflow execution completes. At every point, the
simulation results are collected and maintained in the Central Database for future
analysis.

Simulation EngineAgent

Workflow

Central
Database

Interface

Other
Agents Agent Integration

33



NANJANGUD C NARENDRA

Adaptation, in the form of exceptions, can also be simulated via the ECA rules,
which will model the local behavior of each component when exceptions occur. How-
ever, the interesting aspect of modeling adaptation, is to investigate the global behav-
ior of the system as a combination of these local behaviors under exceptions. In this
context, we are also investigating the so-called “butterfly effect” [3], viz., whether
small perturbations in local behaviors would result in large deviations in the overall
global behavior of the system. We briefly describe simulation of adaptation in Section
5.2.

In the next Section, we will describe our simulation technique in detail.

5 Simulation Technique

5.1 Simulating the System Architecture

As per our simulation approach the Simulation Engine of Figure 3 would engage in
the creation, running, controlling and destruction of the various workflow execution
scenarios that would characterize the behavior of the pervasive computing system.
This means that the simulation model should be lifecycle-based. To that end, we lev-
erage the approach that we proposed earlier [2], and which was based on a lifecycle
approach towards multi-agent simulation based on software process modeling [11].

Our lifecycle-based simulation approach is as follows [2]:
Hierarchical modeling: users’ workflow processes can be modeled hierarchically,

via techniques such as specialization and decomposition as in [10]. In this approach,
all processes in an organization are represented hierarchically, with processes lower
down in the hierarchy being specializations of the root process. Each process is, in
turn, decomposed into sub-processes recursively until the lowest level atomic task is
represented.

ECA-based simulation scripts: as already explained in Section 4, each atomic task
execution by an agent can be expressed as a simulation script in ECA form. An exam-
ple from the hospital domain for a nurse’s PDA, would be:

When (EVENT = “arrange for X-Ray test of patient P”)
If (CONDITION = “X-Ray technician available”)
Then (ACTION = “schedule X-Ray for time = 4 PM; date = 22nd Dec 2004”)

The above ECA rule states that the nurse will schedule an X-Ray test for a patient P,
under the condition that the X-Ray technician is available at a convenient time. The
availability information of the X-Ray technician would form part of the R-Context
(physical and human resources are discussed in more detail later), while the task of X-
Ray scheduling forms part of the S-Context. The CONDITION and ACTION parts of
the ECA rule would also make use of the environmental information stored in the E-
Context in order to determine the availability of an X-Ray technician.

The workflow processes are then modeled as combinations of the atomic tasks rep-
resented via these ECA rules.
• Lifecycle-based modeling: as depicted in Table 1 below, the Simulation Engine

would need to monitor the agents throughout their entire lifecycle. This ranges
from metamodeling for developing the metadata necessary for modeling the

34



LARGE-SCALE TESTING OF PERVASIVE COMPUTING SYSTEMS USING MULTI-
AGENT SIMULATION

events, conditions and actions; right up to running the simulation, recording the re-
sults for playback and analysis, and finally archival.

Process Step in Lifecycle Description
Metamodeling As in [1], defining ontologies (meta-

data) for agent interactions and work-
flow models

Modeling Capturing and representing the cho-
reographing workflow mod-
els/instances, in computer-
understandable form

Analysis Defining and modeling static and dy-
namic (including semantic) properties
of the workflow models

Simulation Symbolically executing the workflow
models in order to observe their behav-
ior

Redesign Redesigning workflow models based
on results of simulation

Visualization Graphical visualizations of workflow
execution and their performance char-
acteristics

Prototyping, walkthrough and performance
support

Incremental enactment of workflow
executions for evaluation purposes

Administration In a manner similar to that described in
[12], user monitoring of the simulation
system

Integration Simulation of external
tools/services/devices into the system,
and how they would integrate with
each other

Monitoring, recording and auditing Collecting and measuring execution
data

History capture and replay Recording the enactment history of the
workflow executions, in order to ana-
lyze them either wholly or in part

Articulation Diagnosing, repairing and reschedul-
ing workflow executions that have
failed

Evolution Using performance data to incremen-
tally and iteratively enhance and re-
structure workflow model definitions

Process Asset Archival & Management Organizing and managing the collec-
tion of workflow model definitions and
instances of workflow executions.

Table 1: Multi-Agent Simulation Lifecycle

35



NANJANGUD C NARENDRA

• Resource Modeling: resources in our system are of two kinds: human and physi-
cal. Appropriate representation of resource properties is essential for accurate
ECA-based modeling of the system. In the case of physical resources (e.g., devices
such as PDAs), some important properties are resource memory size, processor
power, screen size, etc. Some key properties of human resources are capabilities
(whether the resource is trained to be a nurse, technician, doctor, specialist, etc.),
availability (at what time of day or week the resource is available), etc.

Resource properties in our system architecture are to be maintained by the R-
Context Management module, which is expected to develop ontologies (metadata) for
representing this information. This is expected to be done during the Metamodeling
phase of the simulation lifecycle depicted in Table 1.

5.2 Simulating Adaptation

Changes in usage patterns (workflows) are expected to happen constantly in pervasive
computing systems, first, due to changes in users’ functional requirements, and sec-
ond, due to changes in resource properties (such as availability or capacity). As ex-
plained in Section 2, we call the former functional adaptation, whereas the latter is
called architectural adaptation. Since adaptation also involves taking actions in re-
sponse to events, it can also be simulated using the ECA rules described above. The
main difference here is that adaptation-related ECA rules would operate on the “nor-
mal” execution-related ECA rules. That is, adaptation rules would effect changes in
the execution of already running ECA rules.

At the most elementary level, workflow adaptation consists of a combination of the
following atomic actions [13]: adding a task, and deleting a task. Example ECA rules
for task addition and deletion from the hospital domain, are (the impact of adaptation
on the existing workflow is discussed later below):

When (EVENT = “adaptation needed for workflow”)
If (CONDITION = “additional biopsy of patient needed”)
Then (ACTION = “add task T - Biopsy”)

When (EVENT = “adaptation needed for workflow”)
If (CONDITION = “patient condition has become stable”)
Then (ACTION = “delete task T – MRI Scan”)

It is easy to implement the above rules for a workflow that has not yet started exe-
cuting. However, for mid-flight changes, i.e., changing an already running workflow,
existing tasks need to be either aborted or rolled back (as per rules defined in [13]),
before adaptation can be implemented. Typically, tasks that are currently executing
can either be aborted or rolled back, whereas tasks that have completed execution will
need to be rolled back. Tasks that have not yet started execution can only be aborted.
Task abort and rollback actions can also be encoded into ECA rules in a manner simi-
lar to that for task addition and deletion.

36



LARGE-SCALE TESTING OF PERVASIVE COMPUTING SYSTEMS USING MULTI-
AGENT SIMULATION

6 Related Work

Simulation modelling for pervasive computing systems is a new and growing research
area, motivated by the need for testing pervasive computing systems before they are
deployed in the field. In this section, we describe some related work that is most rele-
vant for our paper.

A simulation model for self-adaptive applications in pervasive computing systems
was proposed in [14]. This paper presents a design of a simulation model of contexts
so as to test the context logic of a context-aware application, by allowing sensor data
to be produced from a variety of locations.

One of the most well-known simulators for pervasive computing systems, is UBI-
WISE [15]. This simulator focuses on creating interactive ubiquituous scenarios for
mobile devices, in order to test how they would behave in the real world before the
devices themselves are developed. However, this approach is not as comprehensive as
our multi-agent simulation approach, in that it does not perform simulations at the
level of workflow-based user interactions.

In the related area of sensor networks, several testbeds, such as EmStar
(http://cvs.cens.ucla.edu/emstar/), MoteLab (http://motelab.eecs.harvard.edu/), and
Gnomes (http://www-old.ece.rice.edu/~cavallar/cmclab/) have been developed. These
are complementary to our approach, since they can more accurately capture data at the
resource layer of Figure 2, which can enrich our multi-agent simulation approach.

7 Conclusions and Future Work

In this paper, we have discussed the challenges involved in large scale testing of per-
vasive computing systems, and we have proposed multi-agent simulation as one tech-
nique for addressing these challenges. We have also described our ongoing work on a
workflow-oriented multi-agent simulation technique for testing the varied usage sce-
narios that arise in pervasive computing systems.

Future work will focus on implementing our simulation system and testing it using
several real-life examples. For this, we will be focusing on the medical and transporta-
tion domains. We have used the medical domain in our paper to illustrate our ideas. In
the transportation domain also, the shipping of goods from suppliers to customers
consists of complex workflows involving the usage of several pervasive computing
devices such as RFID tags, mobile phones and PDAs. These workflows are also sub-
ject to constant change, given the dynamic nature of transportation, especially across
state and national boundaries. For example, changes in customs and taxation regula-
tions, which would impact transportation workflows, can be represented using the
adaptation ECA rules as described in Section 5.2.

Acknowledgments
The author wishes to thank Umesh Bellur, Zakaria Maamar, Wathiq Mansoor and Manu
Kuchhal for their feedback. The author also wishes to thank his manager, K. Muralidharan for
supporting his work. Thanks are also due to the anonymous reviewer, whose feedback signifi-
cantly improved the quality of the paper. Other company (i.e., non-IBM), product and service
names may be trademarks or service marks of others.

37



NANJANGUD C NARENDRA

References
[1] U. Bellur and N.C. Narendra, Towards Service Orientation in Pervasive Computing Sys-

tems, Proceedings of ITCC 2005, Pervasive Computing Track, 2005

[2] N.C. Narendra. eAgents: An Approach for Modeling and Simulating Multi-Agent Sys-
tems. Proceedings of AMCIS 2003

[3] Butterfly Effect. See http://www.cmp.caltech.edu/~mcc/chaos_new/Lorenz.html

[4] J.E. Bardram and H.E. Christensen, “Open Issues in Activity-based and Task-Level Com-
puting”, available from
http://www.pervasive.dk/publications/files/open_issues_bardram.pdf

[5] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal Com-
munications, 8(4), August 2001.

[6] G. Kappel, S. Rausch-Schott and W. Retschitzegger, Coordination in Workflow Manage-
ment Systems - A Rule-based Approach, Springer LNCS 1364, 1998

[7] W. Scacchi, and P. Mi, "Process Life Cycle Engineering: A Knowledge-Based Approach
and Environment," Intelligent Systems in Accounting, Finance and Management, Vol 6:
83-107 (1997)

[8] D. Chakraborty, A. Joshi, T. Finin and Y. Yesha. “Towards Distributed Service Discovery
in Pervasive Computing Environments,” IEEE Transactions on Mobile Computing, July
2004

[9] A.K. Dey, G. D. Abowd, and D. Salber, “A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware Applications,” Human-Computer Interac-
tion Journal, Special Issue on Context-Aware Computing, 16, 1, 2001.

[10] T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby,
C.S. Osborn, A. Bernstein, "Tools for inventing organizations: Toward a handbook of or-
ganizational processes," Management Science, Vol. 45, No. 3, March 1999

[11] W. Scacchi, and P. Mi. Process Life Cycle Engineering: A Knowledge-Based Approach
and Environment. Intelligent Systems in Accounting, Finance and Management, Vol 6: 83-
107 (1997)

[12] M.L. Griss and R. Letsinger. Games at Work: Agent-Mediated E-Commerce Simulation.
HP Labs Technical Report HPL-2000-52, available from
http://www.hpl.hp.com/techreports/2000/HPL-2000-52.pdf

[13] N.C. Narendra. Design Considerations for Incorporating Flexible Workflow and Multi-
Agent Interactions in Agent Societies. Journal for Association of Information Systems, 1,
2003

[14] M.C. Huebscher and J. A. McCann. Simulation Model for Self-Adaptive Applications in
Pervasive Computing, Proceedings of 2nd International Workshop on Self-Adaptive and
Autonomic Computing Systems (SAACS’04), Aug 30th – Sep 4th, 2004

[15] J.J. Bartin and V. Vijayaraghavan. UBIWISE, A Ubiquituous Infrastructure Simulation
Environment, HP Labs Technical Report HPL-HP-2002-303, 2002

38




