
Priority aware Resource Management for Real-Time

Operation in Wireless Sensor/Actor Networks

Marcel Baunach
Department of Computer Engineering, University of Würzburg, Germany

Email: baunach@informatik.uni-wuerzburg.de

Abstract—Increasing complexity of today’s WSAN applications
can rapidly result in reduced real-time capabilities of the under-
lying sensor nodes. Using preemptive operating systems is one
way to retain acceptable reactivity within highly dynamic en-
vironments but commonly leads to severe resource management
problems. We outline our dynamic hinting approach for maintain-
ing high system reactivity by efficient combination of preemptive
task scheduling and cooperative resource allocation. With respect
to task priorities, our technique significantly improves classical
methods for handling priority inversions under both short- and
long-term resource allocations. Furthermore, we facilitate com-
positional software design by providing independently developed
tasks with runtime information for yet collaborative resource
sharing. In some cases this even allows to improve blocking delays
as otherwise imposed by bounded priority inversion.

I. INTRODUCTION

The ever increasing size, pervasiveness and demands on

today’s wireless sensor/actor networks (WSAN) significantly

boosts the complexity of the underlying nodes. Thus, modular

hardware and software concepts (e.g. service oriented pro-

gramming abstractions) are more and more used to manage

design and operation of these embedded systems. Then, ade-

quate interaction between the various modules is essential to

avoid typical compositional problems. Beside task scheduling,

directly related issues comprise resource sharing or even real-

time operation. Concerning this mixture, we find that current

WSN research is still too restricted to static design concepts.

As already stated in [1], next generation embedded systems

will be more and more used as reactive real-time platforms

in highly dynamic environments, where the true system load

varies and can not be predicted a priori. In fact, we also expect

a clear focus shift from pure sensing in classic WSNs towards

additional pro-activity in WSAN applications (e.g. integrated

control systems, precise on demand measurements, etc.). Then,

preemptive and prioritized tasks are required for reliable and

fast response on various events.

We present the dynamic hinting approach for cooperative

resource sharing and real-time operation within preemptive

operating systems. As often suggested [2], we take advantage

of the resource manager’s enormous runtime knowledge about

the system’s current resource requirements. This information

is carefully selected and forwarded to those tasks, which

currently block more relevant tasks by a resource allocation.

In turn, these so called hints allow blocking (and even dead-

locked) tasks to adapt to current resource demands and finally

to contribute to the system’s overall reactivity and stability.

II. MOTIVATION AND REQUIREMENTS

Resource assignment in complex, modular systems with

concurrently running tasks is hard to manage during develop-

ment and runtime. This is particularly true, if tasks are allowed

to allocate virtually any resource mix in any order or if long-

term allocations collide with sporadic and time critical on de-

mand allocations. During our research we found that reactivity

and pro-activity in modern WSAN applications requires quite

sophisticated real-time and smart adaptive resource concepts.

We’ll just give a short example from a real-world application:

A radio protocol task commonly requires long-term alloca-

tion of the used transceiver in combination with relatively short

but sporadic access to the interconnection bus. Obviously,

both resources need specific configuration and thus are non-

preemptive. Using the bus becomes time critical when radio

transmission slots must be obeyed or when a receive buffer

must be read and cleared quickly to allow the reception of

further radio packets. Concurrent to this communication task,

sensor tasks often use exactly the same bus for continuous

data streaming. Again both resources are non-preemptive but

this time, the bus is also locked in a long-term allocation.

The resulting compositional problem is already hard to solve.

Even if task priorities can be selected carefully to indicate

the desired relevance of each task, their compliance can not

be guaranteed. Instead, knowledge about the overall system

load (including further tasks) must be incorporated manually

into the code. The regular release of a long-term resource

could be one solution. However, this strategy might impose

considerable overhead when deallocation and re-allocation

are expensive in time and energy. Where data streams often

require explicit termination (trailers) and initiation (headers),

resources might require a time-consuming (de)initialization

procedure upon each (de)allocation. Using server tasks or

stateful libraries for managed operation of such resources is

also no universal solution since this would just relocate the

problem and cause additional overhead.

III. RELATED WORK IN WSN/WSAN SYSTEMS

Non-preemptive systems with run-to-completion tasks are

very common in the WSN domain and prevent some resource

conflicts implicitly since task executions can’t be interleaved.

Yet, this often causes bad reactivity to sporadic events. There-

fore, e.g. TinyOS [3] and Contiki [4] support preemptive

extensions but then lack priorities and resource management

entirely. Preemptive systems potentially provide much better

17



reactivity since a task can be preempted for a more important

action implemented in another task. Yet, preemption yields no

instant advantage if the action requires a shared resource which

is exclusively held by a less important task. Resulting prob-

lems like bounded or unbounded priority inversion [5] might

lead to thwarting of high priority tasks and even deadlocks may

occur. In any case, the task priorities defined by the developer

are not obeyed as desired. To cope with some of these issues,

well studied protocols like priority ceiling, highest locker or

priority inheritance [6] are found in some embedded operating

systems. We selected the priority inheritance protocol (PIP)

as basic technique for our approach. Again, preemptive WSN

operating systems like MANTIS [7] or RETOS [8] do not

consider real-time or resource related problems at all.

IV. RESOURCE MANAGEMENT AND DYNAMIC HINTING

The central objective of our approach is to allow tasks

t ∈ T the collaborative sharing of exclusive resources. At

the same time, it supports them to closely comply with their

intended base priorities Pt. The basic idea behind dynamic

hinting might be applied as integral concept for many real-

time operating systems if these support three central features:

1) truly preemptive and prioritized tasks,

2) non-preemptive (i.e. exclusive) resources,

3) temporally limited resource requests (e.g. via deadline).

While the first two features can be found quite often, the last

requires a special timing concept. Then however, tasks can

request resources which are still held by other tasks. In this

case, a requester is suspended until the resource is released

(and handed over) or until the timeout occurs (and the request

is denied). Though this allows to cope with allocation failures,

it can also induce long resource request chains (Fig. 1, 2a).

In case of infinite timeouts, even deadlocks may occur (Fig.

2b). These are already critical if two tasks mutually request a

resource which is held by the other one, respectively.

Thus, many conservative resource management systems try

to avoid deadlocks by simply refusing a resource request im-

mediately if it would cause an allocation cycle. Others accept

at least resource chains and simply suspend each requester

task until it can be served. In our opinion, both methods

are not satisfying since exactly the just rejected or suspended

task h alone has to cope with the situation. This is especially

annoying if h is truly more important than at least one other

task l in the just averted cycle or extended chain. It also

results in a violation of base priorities (Pl < Ph). Furthermore,

resources are usually indispensable when requested and thus,

tasks tend to retry infinitely until the allocation succeeds. The

resulting (active) loops or long timeouts might not only block

other tasks but even worse, they simply shift the problem back

from system level to task level.

Indeed, task-resource-dependencies are highly dynamic and

depend on the system wide allocation order during runtime.

Hence, another task might react much better than h if it knew

about the situation. Unfortunately, tasks are commonly not

aware about their spurious influence and so the allocation

Figure 1. Example for Priority Inheritance and Dynamic Hinting

chains are commonly reduced successively, beginning at their

very end. This is exactly where dynamic hinting applies.

Our approach provides runtime information for each task

about which resource it should release to improve the overall

system reactivity and liveliness. Considering these so called

hints is always optional for each task. But if followed, it

definitely reduces direct, chained or deadlock blocking of at

least one higher priority task (→Fig. 1, 2).

Therefore, two preconditions must be fulfilled:

1) An ongoing resource allocation must never prevent any

task from requesting any resource. Otherwise, our ap-

proach lacks knowledge about the system requirements.

2) A spurious task must receive the time and opportunity to

react on a hint.

In our case, PIP provides the necessary possibility and

priority (1) and the limited waiting of other tasks provides

the time (2). PIP adjusts task priorities dynamically at runtime

and according to the current resource assignment situation. It

selects each task’s l current priority p(l) ≥ Pl to be at least

as high as the current priority p(h) of the highest prioritized
task h it currently blocks by virtue of a resource allocation.

Then, the first step for determining hints is to identify the

critical resources for each task l. These currently define p(l) 

Pl and thus, they directly or indirectly cause the blocking of

more important tasks with base priority truly above Pl:

crit(t) := {r ∈ R|r defines p(t) by PIP} (1)

In turn, t can reduce the blocking of at least one task by

releasing any r ∈ crit(t). Yet, our approach always selects the
hint as follows (→Fig. 1, 2):

hint(t) := r ∈ crit(t), r was requested last. (2)

Then, if l releases its hinted resource r, it is directly passed
to its first requester, w.l.o.g h. Next, p(l) is updated by PIP

and h is scheduled promptly. This is true since then h holds

the highest priority of all tasks in ready state and l did let h
pass by. As soon as l is scheduled again, it can immediately

re-request r to continue its operation quickly. In any case, the

untimely release of a hint resolved a priority inversion and

accounted for the intended task base priorities.

The example in Figure 1 shows crit(t5) = {r2} since

p(t5) > Pt5 was defined by t4’s request for r2. Releasing

r2 would instantly relax p(t5) := Pt5 . Then t4 is served and

scheduled since it is indeed the task with highest priority but

currently blocked by t5. The allocation timeout t4 specified for
r2 grants t5 the time to cooperate as described. If t5 follows

its hint r2 prior to its regular release, it indeed improves the

bounded priority inversion toward t4. Furthermore, t5 also

improves the reactivity of t2 and t3 since these tasks are also

18



Figure 2. Dynamic Hinting Examples: a) Chain, b) Deadlock

more relevant (Pt2 > Pt3 > Pt5 ) and will receive r2 right

after t4.
Next, we’ll describe two exemplary ways in which a task

may receive and handle its hints: First, an explicit query can

be done at distinct points in time or at code positions where

its handling would be possible at all. Then however, a task

can never react as long as it is in waiting state. Yet, this is

exactly the case upon deadlocks and during many long-term

allocations, where tasks e.g. wait for some events/interrupts

while holding a resource. Beside this severe weakness, the

manual effort and code pollution would be immense.

Thus, we recommend a much better strategy called early

wakeup. When enabled, all functions by which a task suspends

itself may return early upon a new or changed hint. Then, a

dedicated return value will indicate this special situation. This

way, coping with hints can be done instantly and it is entirely

limited to the cases when they really occur. The use of early

wakeup can be selected and tuned individually by each task

t and for each self-suspension. Therefore, we extended the

involved functions by an additional threshold parameter ϕ:

result_t sleep(deadline | timeout, ϕ)
result_t waitEvent(event, deadline | timeout, ϕ)
result_t getResource(resource, deadline | timeout, ϕ)

Then, a self-suspending function will only return early if

(ϕ 6= 0 ∧ p(t) > Pt ∧ p(t) ≥ ϕ), (3)

i.e. if priority inheritance raised the caller’s priority p(t) to at
least the specified threshold ϕ. In particular, these functions

will also return right after calling if a hint is already available.

E.g. both new requests in Fig. 2a,b will immediately resume

t2 if it has early wakeup enabled. Then, its request for r2 is

withdrawn. Otherwise, or if t2 refuses to release its hint r1 and

simply requests r2 again, t3 may wake up early. Obviously, a

single cooperative task in a chain or cycle is already sufficient

to improve or recover from this situation.

Of course, priority thresholds are not the only useful metric

for a task to decide between cooperative or egoistic behavior.

Thus, beside the hinted resource r, we grant each task t access
to some further information: Its current (raised) priority p(t),
a flag indicating that a deadlock situation might persist if the

hint is not followed, and the absolute time at which the hint

r expires due to the latest request timeout:

Resource* getHint(Priority_t* p, boolean* DL, Time_t* TO);

The latter is of special interest for applying time-utility-

functions [9]. These allow to relate the remaining allocation

time to the still remaining timeout. Another option is to

introduce a real-time priority threshold by initially defining

ϕ equal for all tasks. This inherently limits the potential co-

operativeness to situations where tasks (directly or indirectly)

block any real-time task tR with PtR
≥ ϕ.

V. REAL-WORLD APPLICATIONS AND TEST BED

For analyzing our approach of combining temporally lim-

ited resource requests, the priority inheritance protocol and

dynamic hinting, we extended the SmartOS [10] kernel as de-

scribed since it is available for several sensor nodes, provides

appropriate task, timing and resource basics, and thus allowed

an easy integration. The implementation was done for Texas

Instrument’s MSP430 family of microprocessors, since these

are found on a large variety of sensor nodes. Requiring 4 kB
of ROM and 150 B of RAM for the whole kernel, the typically

low computational performance and small memory of sensor

nodes was considered carefully to leave sufficient room for

the actual application.

Our test bed considers a quite frequent problem we also

had in one of our real WSAN control applications: A task S
continuously transfers some data over a shared bus b to an

external device. The stream is rather long (or even infinite)

but can be suspended and resumed at any time for more

important communication over the same bus. Therefore, it

always needs some bus setup plus a complex header/trailer

for proper initiation/termination. During the transfer, S needs

exclusive access to b. A common solution is to split the

stream payload into atomic packets. Then, S would terminate

the stream and release the bus temporarily after each packet.

This way other tasks may receive the bus regularly. However,

since S does not really know if it currently blocks a more

relevant task, the temporary interruption might be completely

unnecessary. Furthermore, the selected packet length defines

the duration of potentially resulting priority inversions. By

using short (long) packets, the overhead increases (decreases)

while improving (degrading) the reactivity of higher prioritized

tasks when these request b. Commonly, a fixed length is

selected during development with regard to the individual

application requirements. These must be known exactly, then.

Using a server task for coordinating the bus access might

even result in slightly worse performance due to client-server

communication overhead. The mentioned problems remain the

same but are concentrated at the server which also commonly

creates atomic packets or grants exclusive bus reservations.

Dynamic hinting provides two options for improvements.

Since our approach knows about pending bus requests, S
could query its current blocking state periodically and react

only if necessary. Though the query interval must still be

selected carefully, the overhead for useless stream interruption

is already avoided! The additional use of early wakeup finally

improves the reactivity as it hints S instantly and only if it

blocks a task with truly higher base priority.

For the concrete application we had to stream 8 bit ADC

data sampled at 10 kHz over an SPI bus. The overhead for each
header and trailer was 1 byte. Beside, a radio transceiver R
and a motor controller M shared the same SPI bus (at different

settings) for short communication. Yet, both associated tasks

had to process sporadic events (av. inter-arrival time: ≈5 ms)
and were much more time and safety critical since especially

failures in the motor control were disastrous. So, we defined

19



Figure 3. Streamtest: Packet Oriented vs. Dynamic Hinting

PS < ϕ = 100 < PR < PM . To reduce CPU load we used a

DMA channel between ADC and the bus controller. Thus, S
simply had to allocate and configure the bus resource for a new

stream. After starting the DMA transfer, S did sleep until an

event signaled to finalize the stream or a hint occurred. The

following example code shows the relevant implementation

details for S when using early wakeup:

1 void streamData() {
int stop = 0;

3 /* start stream */

getResource(&SPI, INFINITE, 0);
5 cfgBus(); header(); startDMA();

while (stop != 1) { // 1 indicates stop event

7 /* Wait infinitely for the stopStream event.

Enable early wakeup if raised >= ϕ = 100. */

9 stop = waitEvent(&stopStream, INFINITE, ϕ);
if (stop == -1) { // hint received!

11 Resource_t *hint = getHint(NULL, NULL, NULL);
if (hint == &SPI) { // conditional hint handling

13 /* stop stream and release resource quickly */

stopDMA(); trailer(); releaseResource(hint);
15 /* --- THE TASK WILL BE SUSPENDED HERE SINCE AT ---

--- LEAST ONE OTHER TASK WAITS FOR THE HINT ---- */

17 /* continue stream as soon as possible */

getResource(hint, INFINITE, 0);
19 cfgBus(); header(); startDMA(); } } }

/* stop stream */

21 stopDMA(); trailer(); releaseResource(&SPI); }

Streaming data simultaneously to sporadic but highly reac-

tive tasks might already cause extreme system load for low

performance embedded systems like sensor nodes. Yet, the

testbed results show, that our approach can still gain good

reactivity and high throughput without manual task tuning.

First, we implemented the application with atomic fixed-length

packets (AP), then we used dynamic hinting with explicit

querying (EQ) and finally we activated early wakeup (EW).

Fig. 3 shows the results in terms of the average blocking delay

τ of the real-time tasks and the achieved payload data rate ρ of
the streaming task. Due to the fixed trailer length and sampling

rate, the best case values are τbc=100 ns and ρbc=10 kB/s.
As expected for the packet oriented design, its throughput

ρAP improves while the blocking delay τAP degrades rapidly

with increasing packet length. When using dynamic hinting

with periodic explicit querying, ρEQ remains nearly constant

and close to the achievable maximum. However, the blocking

delay τEQ almost matches τAP and is also not satisfying for

long periods (for short ones, the task causes higher CPU load).

When using early wakeup, the data rate is still held high while

the blocking delay is kept extremely low. Indeed, ρEW ≈
ρbc and τEW ≈ τbc. For better comparability, ρEW and τEW

are visible as horizontal lines in Fig. 3. Yet, early wakeup is

independent from any packet length or query period.

VI. CONCLUSION AND OUTLOOK

In this paper, we outlined the dynamic hinting approach for

cooperative resource sharing among preemptive tasks in reac-

tive systems. In particular, the individual task base priorities

are considered carefully to keep each task’s performance close

to its intended relevance. Therefore we analyze emerging task-

resource dependencies at runtime and provide spurious tasks

with information about how they could increase the reactivity

of more relevant tasks or to recover from deadlocks. Thereby,

tasks can collaborate even without explicit knowledge of each

other. Nevertheless, each one can decide dynamically between

cooperative or egoistic behavior with respect to its current

conditions and other tasks’ requirements.

While our approach is not necessarily limited to the WSAN

domain, our implementation and test bed showed, that using

compositional software design and prioritized tasks allows to

create quite reactive systems even on small embedded devices.

At present we research more sophisticated concepts for

adjusting the acceptance of hints to the task and system

situation. In particular, we want to improve the hint selection

and the application of TUFs. Also, we plan to evaluate the

use of dynamic hinting for remote resource management in

distributed systems. Concerning real-world applications, we

just integrated our approach into a WSAN based indoor

localization and car control system, where we achieved a

considerably higher localization frequency and path precision.

REFERENCES

[1] Giorgio C. Buttazzo, “Real-Time Scheduling and Resource Manage-
ment,” in Handbook of Real-Time and Embedded Systems, I. Lee, J. Y.-T.
Leung, and S. H. Son, Eds. CRC Press, 2007.

[2] N. Audsley, R. Gao, A. Patil, and P. Usher, “Efficient OS Resource Man-
agement for Distributed Embedded Real-Time Systems,” in Proceedings
of Workshop on Operating Systems Platforms for Embedded Real-Time
applications, Dresden, Germany, Jul 2006.

[3] U. Berkeley, “TinyOS,” Web site http://www.tinyos.net/, 2004.
[4] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt, “Contiki - A

Lightweight and Flexible Operating System for Tiny Networked Sen-
sors,” in LCN ’04: 29th IEEE International Conference on Local
Computer Networks. IEEE Computer Society, 2004.

[5] O. Babaoğlu, K. Marzullo, and F. B. Schneider, “A formalization of
priority inversion,” Real-Time Syst., vol. 5, no. 4, pp. 285–303, 1993.

[6] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[7] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol
Sheth, Brian Shucker, Charles Gruenwald, Adam Torgerson, and Richard
Han, “MANTIS OS: an embedded multithreaded operating system for
wireless micro sensor platforms,” Mob. Netw. Appl., vol. 10, no. 4, 2005.

[8] Hojung Cha, Sukwon Choi, Inuk Jung, Hyoseung Kim, Hyojeong Shin,
Jaehyun Yoo, and Chanmin Yoon, “RETOS: resilient, expandable,
and threaded operating system for wireless sensor networks,” in IPSN
’07: Proceedings of the 6th international conference on Information
processing in sensor networks. New York, NY, USA: ACM, 2007.

[9] Peng Li, Binoy Ravindran, and E. Douglas Jensen, “Adaptive Time-
Critical Resource Management Using Time/Utility Functions: Past,
Present, and Future,” Computer Software and Applications Conference,
Annual International, vol. 2, pp. 12–13, 2004.

[10] M. Baunach, R. Kolla, and C. Mühlberger, “Introduction to a Small
Modular Adept Real-Time Operating System,” in 6. Fachgespräch
Sensornetzwerke. RWTH Aachen University, 16.–17. Jul. 2007.

20


